

UNIT I LINEAR DATA STRUCTURES – LIST

Abstract Data Types (ADTs) – List ADT – array-based implementation – linked list

implementation ––singly linked lists- circularly linked lists- doubly-linked lists– applications of

lists –Polynomial Manipulation – All operation (Insertion, Deletion, Merge, Traversal)

Data:

A collection of facts, concepts, figures, observations, occurrences or instructions in a

formalized manner.

Information:

The meaning that is currently assigned to data by means of the conventions applied to

those data(i.e. processed data)

Record:

Collection of related fields.

Data type:

Set of elements that share common set of properties used to solve a program.

Data Structures:

Data Structure is the way of organizing, storing, and retrieving data and their relationship

with each other.

Characteristics of data structures:

1. It depicts the logical representation of data in computer memory.

2. It represents the logical relationship between the various data elements.

3. It helps in efficient manipulation of stored data elements.

4. It allows the programs to process the data in an efficient manner.

Operations on Data Structures:

1.Traversal

2.Search

3.Insertion

4.Deletion

DATA STRUCTURES

PRIMARY DATA STRUCTURES SECONDARY DATA STRUCTURES

INT, CHAR, FLOAT DOUBLE

LINEAR DATA

STRUCTURES

NON LINEAR DATA

STRUCTURES

LISTS ARRAYS STACKS QUEUES TREES GRAPHS

CLASSIFICATION OF DATA STRUCTURES

Primary Data Strucutres/Primitive Data Structures:

Primitive data structures include all the fundamental data structures that can be directly

manipulated by machine-level instructions. Some of the common primitive data structures

include integer, character, real, boolean etc

Secondary Data Structures/Non Primitive Data Structures:

Non primitive data structures, refer to all those data structures that are derived from one or

more primitive data structures. The objective of creating non-primitive data structures is to form

sets of homogeneous or heterogeneous data elements.

Linear Data Structures:

Linear data structures are data strucutres in which, all the data elements are arranged in i, linear

or sequential fashion. Examples of data structures include arrays, stacks, queues, linked lists, etc.

Non Linear Structures:

In non-linear data strucutres, there is definite order or sequence in which data elements are

arranged. For instance, a non-linear data structures could arrange data elements in a hierarchical

fashion. Examples of non-linear data structures are trees and graphs.

Static and dynamic data structure:

Static Ds:

If a ds is created using static memory allocation, ie. ds formed when the number of data items

are known in advance ,it is known as static data static ds or fixed size ds.

Dynamic Ds:

If the ds is created using dynamic memory allocation i.e ds formed when the number of data

items are not known in advance is known as dynamic ds or variable size ds.

Application of data structures:

Data structures are widely applied in the following areas:

Compiler design

Operating system

Statistical analysis package

DBMS

Numerical analysis

Simulation

Artificial intelligence

Graphics

ABSTRACT DATA TYPES (ADTS):

An abstract Data type (ADT) is defined as a mathematical model with a collection of operations

defined on that model. Set of integers, together with the operations of union, intersection and set

difference form a example of an ADT. An ADT consists of data together with functions that

operate on that data.

Advantages/Benefits of ADT:

1.Modularity

2.Reuse

3. code is easier to understand

4. Implementation of ADTs can be changed without requiring changes to the program that uses

the ADTs.

THE LIST AI)T:
List is an ordered set of elements.

The general form of the list is A1 ,A2 , ……,AN

A1 - First element of the list

A2- 1
st element of the list

N –Size of the list

If the element at position i is Ai, then its successor is Ai+1 and its predecessor is Ai-1

Various operations performed on List

1. Insert (X, 5)- Insert the element X after the position 5.

2. Delete (X) - The element X is deleted

3. Find (X) - Returns the position of X.

4. Next (i) - Returns the position of its successor element i+1.

5. Previous (i) Returns the position of its predecessor i-1.

6. Print list - Contents of the list is displayed.

7. Makeempty- Makes the list empty.

Implementation of list ADT:

1. Array based Implementation

2. Linked List based implementation

Array Implementation of list:

Array is a collection of specific number of same type of data stored in consecutive memory

locations. Array is a static data structure i.e., the memory should be allocated in advance and the

size is fixed. This will waste the memory space when used space is less than the allocated space.

Insertion and Deletion operation are expensive as it requires more data movements

Find and Print list operations takes constant time.

The basic operations performed on a list of elements are

a. Creation of List.

b. Insertion of data in the List

c. Deletion of data from the List

d. Display all data‟s in the List

e. Searching for a data in the list

Declaration of Array:

#define maxsize 10

int list[maxsize], n ;

Create Operation:

Create operation is used to create the list with „ n „ number of elements .If „ n „ exceeds the

array‟s maxsize, then elements cannot be inserted into the list. Otherwise the array elements are

stored in the consecutive array locations (i.e.) list [0], list [1] and so on.

void Create ()

{

int i;

printf("\nEnter the number of elements to be added in the list:\t");

scanf("%d",&n);

printf("\nEnter the array elements:\t");

for(i=0;i<n;i++)

scanf("%d",&list[i]);

}

If n=6, the output of creation is as follows:

list[6]

Insert Operation:

Insert operation is used to insert an element at particular position in the existing list. Inserting the

element in the last position of an array is easy. But inserting the element at a particular position

in an array is quite difficult since it involves all the subsequent elements to be shifted one

position to the right.

Routine to insert an element in the array:

void Insert()

{

int i,data,pos;

printf("\nEnter the data to be inserted:\t");

scanf("%d",&data);

printf("\nEnter the position at which element to be inserted:\t");

scanf("%d",&pos);

if (pos==n)

printf (“Array overflow”);

for(i = n-1 ; i >= pos-1 ; i--)

list[i+1] = list[i];

list[pos-1] = data;

n=n+1;

Display();}

Consider an array with 5 elements [max elements = 10]

10 20 30 40 50

If data 15 is to be inserted in the 2nd position then 50 has to be moved to next index position, 40

has to be moved to 50 position, 30 has to be moved to 40 position and 20 has to be moved to

30 position.

10 20 30 40 50

10

20 30 40 50

After this four data movement, 15 is inserted in the 2nd position of the array.

10 15 20 30 40 50

Deletion Operation:

Deletion is the process of removing an element from the array at any position.

Deleting an element from the end is easy. If an element is to be deleted from any particular

position ,it requires all subsequent element from that position is shifted one position towards

left.

Routine to delete an element in the array:

void Delete()

{

int i, pos ;

printf("\nEnter the position of the data to be deleted:\t");

scanf("%d",&pos);

printf("\nThe data deleted is:\t %d", list[pos-1]);

for(i=pos-1;i<n-1;i++)

list[i]=list[i+1];

n=n-1;

Display();

}

Consider an array with 5 elements [max elements = 10]

10 20 30 40 50

If data 20 is to be deleted from the array, then 30 has to be moved to data 20 position, 40 has to

be moved to data 30 position and 50 has to be moved to data 40 position.

10 20 30 40 50

After this 3 data movements, data 20 is deleted from the 2nd position of the array.

10 30 40 50

Display Operation/Traversing a list

Traversal is the process of visiting the elements in a array.

Display() operation is used to display all the elements stored in the list. The elements are stored

from the index 0 to n - 1. Using a for loop, the elements in the list are viewed

Routine to traverse/display elements of the array:

void display()

{

int i;

printf("\n**********Elements in the array**********\n");

for(i=0;i<n;i++)

printf("%d\t",list[i]);

}

Search Operation:

Search() operation is used to determine whether a particular element is present in the list or not.

Input the search element to be checked in the list.

Routine to search an element in the array:

void Search()

{

int search,i,count = 0;

printf("\nEnter the element to be searched:\t");

scanf("%d",&search);

for(i=0;i<n;i++)

{

if(search == list[i])

count++;

}

if(count==0)

printf("\nElement not present in the list");

else

printf("\nElement present in the list");

}

Program for array implementation of List

#include<stdio.h>

#include<conio.h>

#define maxsize 10

int list[maxsize],n;

void Create();

void Insert();

void Delete();

void Display();

void Search();

void main()

{
int choice;

clrscr();
do

{

printf("\n Array Implementation of List\n");

printf("\t1.create\n");

printf("\t2.Insert\n");

printf("\t3.Delete\n");

printf("\t4.Display\n");

printf("\t5.Search\n");

printf("\t6.Exit\n");

printf("\nEnter your choice:\t");

scanf("%d",&choice);

switch(choice)

{

case 1: Create();

break;

case 2: Insert();

break;

case 3: Delete();

break;

case 4: Display();

break;

case 5: Search();

break;

case 6: exit(1);

default: printf("\nEnter option between 1 - 6\n");

break;

}
}while(choice<7);

}
void Create()

{
int i;
printf("\nEnter the number of elements to be added in the list:\t");
scanf("%d",&n);

printf("\nEnter the array elements:\t");

for(i=0;i<n;i++)

scanf("%d",&list[i]);

Display();

}
void Insert()

{
int i,data,pos;
printf("\nEnter the data to be inserted:\t");

scanf("%d",&data);

printf("\nEnter the position at which element to be inserted:\t");

scanf("%d",&pos);

for(i = n-1 ; i >= pos-1 ; i--)

list[i+1] = list[i];

list[pos-1] = data;

n+=1;

Display();

}
void Delete()

{

int i,pos;

printf("\nEnter the position of the data to be deleted:\t");

scanf("%d",&pos);

printf("\nThe data deleted is:\t %d", list[pos-1]);

for(i=pos-1;i<n-1;i++)

list[i]=list[i+1];

n=n-1;

Display();
}
void Display()

{
int i;
printf("\n**********Elements in the array**********\n");
for(i=0;i<n;i++)

printf("%d\t",list[i]);

}

void Search()

{
int search,i,count = 0;
printf("\nEnter the element to be searched:\t");
scanf("%d",&search);

for(i=0;i<n;i++)

{

if(search == list[i])

{
count++;

}

}
if(count==0)

printf("\nElement not present in the list");

else

printf("\nElement present in the list");

}

Output

Array Implementation of List

1.create

2.Insert

3.Delete

4.Display

5.Search

6.Exit

Enter your choice: 1

Enter the number of elements to be added in the list: 5

Enter the array elements: 1 2 3 4 5

**********Elements in the array**********

1 2 3 4 5

Array Implementation of List

1.create

2.Insert

3.Delete

4.Display

5.Search

6.Exit

Enter your choice: 2

Enter the data to be inserted: 3

Enter the position at which element to be inserted: 1

**********Elements in the array**********

3 1 2 3 4 5

Array Implementation of List

1.create

2.Insert

3.Delete

4.Display

5.Search

6.Exit

Enter your choice: 3

Enter the position of the data to be deleted: 4

The data deleted is: 3

**********Elements in the array**********

3 1 2 4 5

Array Implementation of List

1.create

2.Insert

3.Delete

4.Display

5.Search

6.Exit

Enter your choice: 5

Enter the element to be searched: 1

Element present in the list

Array Implementation of List

1.create

2.Insert

3.Delete

4.Display

5.Search

6.Exit

Enter your choice:6

Advantages of array implementation:
1. The elements are faster to access using random access
2.Searching an element is easier

Limitation of array implementation

An array store its nodes in consecutive memory locations.

The number of elements in the array is fixed and it is not possible to change the number

of elements .

Insertion and deletion operation in array are expensive. Since insertion is performed by
pushing the entire array one position down and deletion is performed by shifting the

entire array one position up.
Applications of arrays:
Arrays are particularly used in programs that require storing large collection of similar type data
elements.

Differences between Array based and Linked based implementation

 Array Linked List

Definition Array is a collection of elements

having same data type with common

name

Linked list is an ordered collection

of elements which are connected by

links/pointers

Access Elements can be accessed using
index/subscript, random access

Sequential access

Memory structure Elements are stored in contiguous
memory locations

Elements are stored at available
memory space

Insertion & Deletion Insertion and deletion takes more time
in array

Insertion and deletion are fast and
easy

Memory Allocation Memory is allocated at compile time
i.e static memory allocation

Memory is allocated at run time i.e
dynamic memory allocation

Types 1D,2D,multi-dimensional SLL, DLL circular linked list

Dependency Each elements is independent Each node is dependent on each
other as address part contains
address of next node in the list

NEXT DATA

Linked list based implementation:

Linked Lists:

A Linked list is an ordered collection of elements. Each element in the list is referred as a node.

Each node contains two fields namely,

Data field-The data field contains the actual data of the elements to be stored in the list

Next field- The next field contains the address of the next node in the list

A Linked list node

Null

L

Advantages of Linked list:

1. Insertion and deletion of elements can be done efficiently

2.It uses dynamic memory allocation

3.Memory utilization is efficient compared to arrays

Disadvantages of linked list:

1. Linked list does not support random access

2.Memory is required to store next field

3.Searching takes time compared to arrays

Types of Linked List

1. Singly Linked List or One Way List

2. Doubly Linked List or Two-Way Linked List

3. Circular Linked List

Dynamic allocation

The process of allocating memory to the variables during execution of the program or at run time

is known as dynamic memory allocation. C language has four library routines which allow this

function.

Dynamic memory allocation gives best performance in situations in which we do not know

memory requirements in advance. C provides four library routines to automatically allocate

memory at the run time.

30 20 40 10

To use dynamic memory allocation functions, you must include the header file stdlib.h.

malloc()

The malloc function reserves a block of memory of specified size and returns a pointer of type

void. This means that we can assign it to any type of pointer.

The general syntax of malloc() is

ptr =(cast-type*)malloc(byte-size);

where ptr is a pointer of type cast-type. malloc() returns a pointer (of cast type) to an area of

memory with size byte-size.

calloc():

calloc() function is another function that reserves memory at the run time. It is normally used to

request multiple blocks of storage each of the same size and then sets all bytes to zero. calloc()

stands for contiguous memory allocation and is primarily used to allocate memory for arrays.

The syntax of calloc() can be given as:

ptr=(cast-type*) calloc(n,elem-size);

The above statement allocates contiguous space for n blocks each of size elem-size bytes. The

only difference between malloc() and calloc() is that when we use calloc(), all bytes are

initialized to zero. calloc() returns a pointer to the first byte of the allocated region.

free():

The free() is used to release the block of memory.

Syntax:

The general syntax of the free()function is,

free(ptr);

where ptr is a pointer that has been created by using malloc() or calloc(). When memory is

deallocated using free(), it is returned back to the free list within the heap.

realloc():

At times the memory allocated by using calloc() or malloc() might be insufficient or in excess.

In both the situations we can always use realloc() to change the memory size already allocated

by calloc() and malloc(). This process is called reallocation of memory. The general syntax for

realloc() can be given as,

ptr = realloc(ptr,newsize);

variable ptr. It returns a pointer to the first byte of the memory block. The allocated new block

may be or may not be at the same region. Thus, we see that realloc() takes two arguments. The

first is the pointer referencing the memory and the second is the total number of bytes you want

to reallocate.

Singly Linked List

A singly linked list is a linked list in which each node contains only one link field pointing to the
next node in the list

SLL

SLL with a Header

Basic operations on a singly-linked list are:

1. Insert – Inserts a new node in the list.

2. Delete – Deletes any node from the list.

3. Find – Finds the position(address) of any node in the list.

4. FindPrevious - Finds the position(address) of the previous node in the list.

5. FindNext- Finds the position(address) of the next node in the list.

6. Display-display the date in the list

7. Search-find whether a element is present in the list or not

Declaration of Linked List

void insert(int X,List L,position P);

void find(List L,int X); void

delete(int x , List L); typedef

struct node *position;

position L,p,newnode;

struct node

{

int data;

position next;

};

Creation of the list:

This routine creates a list by getting the number of nodes from the user. Assume n=4 for this

example.

void create()

{

int i,n;

L=NULL;

newnode=(struct node*)malloc(sizeof(struct node));

printf("\n Enter the number of nodes to be inserted\n");

scanf("%d",&n);

printf("\n Enter the data\n");

scanf("%d",&newnode->data);

newnode->next=NULL;

L=newnode;

p=L;

for(i=2;i<=n;i++)

{

newnode=(struct node *)malloc(sizeof(struct node));

scanf("%d",&newnode->data);

newnode->next=NULL;

p->next=newnode;

p=newnode;

}

}

Initially the list is empty

List L

Null

L

Insert(10,List L)- A new node with data 10 is inserted and the next field is updated to

NULL. The next field of previous node is updated to store the address of new node.

Null

L

P

Insert(20,L) - A new node with data 20 is inserted and the next field is updated to NULL.

The next field of previous node is updated to store the address of new node.

Null

Insert(30,L) - A new node with data 30 is inserted and the next field is updated to NULL. The

next field of previous node is updated to store the address of new node.

Null

L P

20 10

L P

20 10 30

10

Case 1:Routine to insert an element in list at the beginning

void insert(int X, List L, position p)

{

p=L;

newnode=(struct node*)malloc(sizeof(struct node));

printf("\nEnter the data to be

Inserted\n");scanf("%d",&newnode->data);

newnode->next=L; L=newnode;

}

Case 2:Routine to insert an element in list at Position

This routine inserts an element X after the position P.

Void Insert(int X, List L, position p)

{

position newnode;

newnode =(struct node*) malloc(sizeof(struct node));

if(newnode = = NULL)

Fatal error(“ Out of Space ”);

else

{

}

}

Newnode -> data = x ;

Newnode -> next = p ->next ;

P -> next = newnode ;

Insert(25,L, P) - A new node with data 25 is inserted after the position P and the next field is

updated to NULL. The next field of previous node is updated to store the address of new node.

Case 3:Routine to insert an element in list at the end of the list

void insert(int X, List L, position p)

{

p=L;

}

newnode=(struct node*)malloc(sizeof(struct node));

printf("\nEnter the data to be inserted\n");

scanf("%d",&newnode->data);

while(p->next!=NULL)

p=p->next;

newnode->next=NULL;

p->next=newnode;

p=newnode;

Routine to check whether a list is Empty

This routine checks whether the list is empty .If the lis t is empty it returns 1

int IsEmpty(List L)

{

if (L -> next = = NULL)

return(1); L

}

Null

Routine to check whether the current position is last in the List

This routine checks whether the current position p is the last position in the list. It returns 1 if

position p is the last position

int IsLast(List L , position p)

{

if(p -> next= =NULL)

return(1);

}

Null

Routine to Find the Element in the List: P

This routine returns the position of X in the list L

position find(List L, int X)

{

position p;

p=L->next;

while(p!=NULL && p->data!=X)

p=p->next;

return(p);

}

Find(List L, 20) - To find an element X traverse from the first node of the list and move to

the next with the help of the address stored in the next field until data is equal to X or till the

end of the list

Null

X P

L

30 20 40 10

L

30 20 40 10

Find Previous

It returns the position of its predecessor.

position FindPrevious (int X, List L)

{

position p;

p = L;

while(p -> next ! = NULL && p -> next -> data! = X)

p = p -> next;

return P;

}

Routine to find next Element in the List

It returns the position of successor.

void FindNext(int X, List L)

{

position P;

P=L->next;

while(P!=NULL && P->data!=X)

P = P->next;

return P->next;

}

Routine to Count the Element in the List:

This routine counts the number of elements in the list

void count(List L)

{

P = L -> next;

while(p != NULL)

{

count++;

p = p -> next;

}

print count;

}

Routine to Delete an Element in the List:

It delete the first occurrence of element X from the list L

void Delete(int x , List L){

position p, Temp;

p = FindPrevious(X, L);

if(! IsLast (p, L)){

temp = p -> next;

P -> next = temp -> next;

free (temp);

}}

Routine to Delete the List

This routine deleted the entire list.

void Delete_list(List L)

{

position P,temp;

P=L->next;

L->next=NULL;

while(P!=NULL)

{

temp=P->next;

free(P);

P=temp;

}

}

Program 1: Implementation of Singly linked List Output

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
void create();

void display();

void insert();

void find();

void delete();

typedef struct node *position;

position L,p,newnode;

struct node
{

1.create

2.display

3.insert

4.find

5.delete

Enter your choice

int data;

position next;

};

void main()

{

int choice;

clrscr();

do

{
printf("1.create\n2.display\n3.insert\n4.find\n5.delete\n\n\n");

printf("Enter your choice\n\n");

scanf("%d",&choice);

switch(choice)

{

case 1:
create();
break;

case 2:
display();

break;

case 3:

insert();

break;

case 4:

find();

break;

case 5:

delete();

break;

case 6:
exit(0);

}

}
while(choice<7);

getch();

}
void create()

{

int i,n;

L=NULL;

newnode=(struct node*)malloc(sizeof(struct node));

printf("\n Enter the number of nodes to be inserted\n");

scanf("%d",&n);

printf("\n Enter the data\n");

scanf("%d",&newnode->data);

newnode->next=NULL;

1

Enter the number of

nodes to be inserted

5

Enter the data

1

2

3

4

5

1. create

2.display

3.insert

4.find

5.delete

Enter your choice

2

1 -> 2 -> 3 -> 4 -> 5 ->

Null

1.create

2. display

3.insert

4.find

5.delete

Enter your choice

3

L=newnode; p=L;

for(i=2;i<=n;i++)

{

newnode=(struct node *)malloc(sizeof(struct node));

scanf("%d",&newnode->data);

newnode->next=NULL;

p->next=newnode;

p=newnode;

}

}

void display()

{ p=L;

while(p!=NULL)

{

printf("%d -> ",p->data);

p=p->next;

}

printf("Null\n");

}

void insert()

{

int ch;

printf("\nEnter ur choice\n");

printf("\n1.first\n2.middle\n3.end\n");

scanf("%d",&ch);

switch(ch)

{

case 2:
{

int pos,i=1;

p=L;
newnode=(struct node*)malloc(sizeof(struct node));
printf("\nEnter the data to be inserted\n");

scanf("%d",&newnode->data);

printf("\nEnter the position to be inserted\n");

scanf("%d",&pos);

newnode->next=NULL;

while(i<pos-1)

{
p=p->next;

i++;

}
newnode->next=p->next;

p->next=newnode;

Enter ur choice

1.first

2.middle

3.end

1

Enter the data to be

inserted

7

7 -> 1 -> 2 -> 3 -> 4 -> 5 -

> Null

1.create

2.display

3.insert

4.find

5.delete

Enter your choice

p=newnode;

display();
break;

}
case 1:

{

p=L;

newnode=(struct node*)malloc(sizeof(struct node));
printf("\nEnter the data to be inserted\n");

scanf("%d",&newnode->data);

newnode->next=L;

L=newnode;

display();

break;
}

case 3:

{

p=L;

newnode=(struct node*)malloc(sizeof(struct node));
printf("\nEnter the data to be inserted\n");

scanf("%d",&newnode->data);

while(p->next!=NULL)

p=p->next;

newnode->next=NULL;

p->next=newnode;

p=newnode;

display();

break;

}

}

}
void find()
{

int search,count=0;
printf("\n Enter the element to be found:\n");

scanf("%d",&search);

p=L;

while(p!=NULL)

{

if(p->data==search)

{

count++;

break;

}
p=p->next;

}

1. The elements can be accessed using the next link

2. Occupies less memory than DLL as it has only one next field.

Disadvantages of SLL

1. Traversal in the backwards is not possible

2.Less efficient to for insertion and deletion.

if(count==0)
printf("\n Element Not present\n");

else

printf("\n Element present in the list \n\n");

}

void delete()

{

position p,temp;

int x; p=L;

if(p==NULL)

{

printf("empty list\n");

}

else

{

printf("\nEnter the data to be deleted\n");

scanf("%d",&x);

if(x==p->data)

{ temp=p;

L=p->next;

free(temp);

display();

}

else

{

while(p->next!=NULL && p->next->data!=x)

{

p=p->next;

}

temp=p->next;

p->next=p->next->next;

free(temp);

display();

}

}

}

Advantages of SLL

Doubly-Linked List

A doubly linked list is a linked list in which each node has three fields namely Data, Next, Prev.

Data-This field stores the value of the element

Next-This field points to the successor node in the list

Prev-This field points to the predecessor node in the list

PREV DATA NEXT

DLL NODE

DOUBLY LINKED LIST

Basic operations of a doubly -linked list are:

1. Insert – Inserts a new element at the end of the list.

2. Delete – Deletes any node from the list.

3. Find – Finds any node in the list.

4. Print – Prints the list

Declaration of DLL Node

typedef struct node *position ;

struct node

{

int data;

position prev;

position next;

};

PREV DATA NEXT

Creation of list in DLL

Initially the list is empty. Then assign the first node as head.

newnode->data=X;

newnode->next=NULL;

newnode->prev=NULL;

list.

L=newnode;

If we add one more node in the list,then create a newnode and attach that node to the end of the

L->next=newnode;

newnode->prev=L;

Routine to insert an element in a DLL at the beginning

void Insert (int x, list L, position P){

struct node *Newnode;

if(pos==1)

P=L;

Newnode = (struc node*)malloc (sizeof(struct node));

if (Newnode! = NULL)

Newnode->data= X;

Newnode ->next= L ->next;

L->next ->prev=Newnode

L->next = Newnode;

Newnode ->prev = L;

}

Routine to insert an element in a DLL any position :

void Insert (int x, list L, position P)

{

struct node *Newnode;

Newnode = (struc node*)malloc (sizeof(struct node));

if (Newnode! = NULL)

Newnode->data= X;

Newnode ->next= P ->next;

P->next ->prev=Newnode

P ->next = Newnode;

Newnode ->prev = P:

}

Routine to insert an element in a DLL at the end:

void insert(int X, List L, position p)

{

p=L;

newnode=(struct node*)malloc(sizeof(struct node));

printf("\nEnter the data to be inserted\n");

scanf("%d",&newnode->data);

while(p->next!=NULL)

p=p->next;

newnode->next=NULL;

p->next=newnode;

newnode->prev=p;

}

Routine for deleting an element:

void Delete (int x ,List L)

{

Position p , temp;

P = Find(x, L);

if(P==L->next)

temp=L;

L->next=temp->next;

temp->next->prev=L;

free(temp);

elseif(IsLast(p, L))

{

temp = p;

p -> prev -> next = NULL;

free(temp);

}

else

{

temp = p;

p -> prev -> next = p -> next;

p -> next -> prev = p -> prev;

free(temp);

}

Routine to display the elements in the list:

void Display(List L)

{

P = L -> next ;

while (p != NULL)

{

printf(“%d”, p -> data ;

p = p -> next ;

}

printf(“ NULL”);

}

Routine to search whether an element is present in the list

void find()

{

int a,flag=0,count=0;

if(L==NULL)

printf(“\nThe list is empty”);

else

{

printf(“\nEnter the elements to be searched”);

scanf(“%d”,&a);

for(P=L;P!=NULL;P=P->next)

{

count++;

if(P->data==a)

{

flag=1;

printf(“\nThe element is found”);

printf(“\nThe position is %d”,count);

break;

}

}

if(flag==0)

printf(“\nThe element is not found”);

}

}

Pr#oignrcalmud2e<:sImtdpiole.hm>entation of Doubly linked list Output

#include<conio.h>
void insert();

void deletion();
void display();

void find();

typedef struct node *position;

position newnode,temp,L=NULL,P;

struct node

{
int data;
position next;

position prev;

};

void main()

{

int choice;

clrscr();

do

{ printf(“\n1.INSERT”);

printf(“\n2.DELETE”);

printf(“\n3.DISPLAY”);
printf(“\n4.FIND”);

printf(“\n5.EXIT”);

printf(“\nEnter ur option”);
scanf(“%d”,&choice);

switch(choice)

{

case 1:

insert();

break;

case 2:

deletion();

break;

case 3:

display();

1. INSERT

2. DELETE

3. DISPLAY

4. FIND

5. EXIT

Enter ur option1

Enter the data to be

inserted10

1. INSERT

2. DELETE

3. DISPLAY

4. FIND

5. EXIT

Enter ur option1

Enter the data to be

inserted 20

Enter the position where

the data is to be inserted 2

break;
case 4:

find();

break;

case 5:

exit(1);
}

}while(choice!=5);

getch();

}

void insert()

{

int pos,I;

newnode=(struct node*)malloc(sizeof(struct node));

printf(“\nEnter the data to be inserted”);

scanf(“%d”,&newnode->data);

if(L==NULL)

{

L=newnode;

L->next=NULL;

L->prev=NULL;

}

else

{

printf(“\nEnter the position where the data is to be inserted”);

scanf(“%d”,&pos);

if(pos==1)

{

newnode->next=L;

newnode->prev=NULL;

L->prev=newnode;

L=newnode;

}

else

{

P=L;

for(i=1;i<pos-1&&P->next!=NULL;i++)

{
P=P->next;

}

newnode->next=P->next;

P->next=newnode;

newnode->prev=P;

P->next->prev=newnode;
}

1. INSERT

2. DELETE

3. DISPLAY

4. FIND

5. EXIT

Enter ur option1

Enter the data to be

inserted 30

Enter the position where

the data is to be inserted3

1. INSERT

2. DELETE

3. DISPLAY

4. FIND

5. EXIT

Enter ur option 3

The elements in the list

are

10 20 30

1. INSERT

2. DELETE

3. DISPLAY

4. FIND

5. EXIT

Enter ur option 2

}

}

void deletion()

{

int pos,I;

if(L==NULL)

printf(“\nThe list is empty”);

else

{

printf(“\nEnter the position of the data to be deleted”);

scanf(“%d”,&pos);

if(pos==1)

{ temp=L;

L=temp->next;

L->prev=NULL;

printf(“\nThe deleted element is %d”,temp->data);
free(temp);

}

else

{

P=L;

for(i=1;i<pos-1;i++)

P=P->next;

temp=P->next;

printf(“\nThe deleted element is %d”,temp->data);

P->next=temp->next;

temp->next->prev=P;

free(temp);

}
}

}

void display()

{

if(L==NULL)

printf(“\nNo of elements in the list”);

else

{

printf(“\nThe elements in the listare\n”);

for(P=L;P!=NULL;P=P->next)

printf(“%d”,P->data);

}

}

void find()

{

int a,flag=0,count=0;

Enter the position of the

data to be deleted 2

The deleted element is 20

1.INSERT

2. DELETE

3. DISPLAY

4. FIND

5. EXIT

Enter ur option 3

The elements in the list

are

10 30

1. INSERT

2. DELETE

3. DISPLAY

4. FIND

5. EXIT

Enter ur option4

Enter the elements to be

searched 20

The element is not found

1.INSERT

2. DELETE

3. DISPLAY

4. FIND

5. EXIT

Enter ur option 4

if(L==NULL)
printf(“\nThe list is empty”);
else

{

printf(“\nEnter the elements to be searched”);

scanf(“%d”,&a);

for(P=L;P!=NULL;P=P->next)

{

count++;

if(P->data==a)

{

flag=1;

printf(“\nThe element is found”);

printf(“\nThe position is %d”,count);

break;

}

}

if(flag==0)
printf(“\nThe element is not found”);

}

}

Enter the elements to be

searched 30

The element is found

The position is 2

1.INSERT

2. DELETE

3. DISPLAY

4. FIND

5. EXIT

Enter ur option5

Press any key to continue .

. .

Advantages of DLL:

The DLL has two pointer fields. One field is prev link field and another is next link field.

Because of these two pointer fields we can access any node efficiently whereas in SLL only one

link field is there which stores next node which makes accessing of any node difficult.

Disadvantages of DLL:

The DLL has two pointer fields. One field is prev link field and another is next link field.

Because of these two pointer fields, more memory space is used by DLL compared to SLL

CIRCULAR LINKED LIST:

Circular Linked list is a linked list in which the pointer of the last node points to the first node.

Types of CLL:

CLL can be implemented as circular singly linked list and circular doubly linked list.

Singly linked circular list:

A Singly linked circular list is a linked list in which the last node of the list points to the first

node.

Declaration of node:

typedef struct node *position;

struct node

{

int data;

position next;

};

Routine to insert an element in the beginning

void insert_beg(int X,List L)

{

position Newnode;

Newnode=(struct node*)malloc(sizeof(struct node));

if(Newnode!=NULL)

{

Newnode->data=X;

Newnode->next=L->next;

L->next=Newnode;

}

}

Routine to insert an element in the middle

void insert_mid(int X, List L, Position p)

{

position Newnode;

Newnode=(struct node*)malloc(sizeof(struct node));

if(Newnode!=NULL)

{

Newnode->data=X;

Newnode->next=p->next;

p->next=Newnode;

}

}

Routine to insert an element in the last

void insert_last(int X, List L)

position Newnode;

Newnode=(struct node*)malloc(sizeof(struct node));

if(Newnode!=NULL)

{

P=L;

while(P->next!=L)

P=P->next;

Newnode->data=X;

P->next=Newnode;

Newnode->next=L;

}

}

Routine to delete an element from the beginning

void del_first(List L)

{

position temp;

temp=L->next;

L->next=temp->next;

free(temp);

}

www.padeepz.net

wwwC.Sp62a02deepz.net 42 PDS-1NOTES

Routine to delete an element from the middle

void del_mid(int X,List L)

{

position p, temp;

p=findprevious(X,L);

if(!Islast(P,L))

{

temp=p->next;

p->next=temp->next;

free(temp);

}

}

http://www.padeepz.net/

Routine to delete an element at the last position

void del_last(List L)

{

position p, temp;

p=L;

while(p->next->next!=L)

p=p->next;

temp=p->next;

p->next=L

free(temp);}

Doubly Linked circular list:

A doubly linked circular list is a doubly linked list in which the next link of the last node points

to the first node and prev link of the first node points to the last node of the list.

Declaration of node:

typedef struct node *position;

struct node

{

int data;

position next;

position prev;

};

Routine to insert an element in the beginning

void insert_beg(int X,List L)

{

position Newnode;

Newnode=(struct node*)malloc(sizeof(struct node));

if(Newnode!=NULL)

{

Newnode->data=X;

Newnode->next=L->next;

L->next->prev=Newnode;

L->next=Newnode;

Newnode->prev=L;

}

}

Routine to insert an element in the middle

void insert_mid(int X, List L, Position p)

{

position Newnode;

Newnode=(struct node*)malloc(sizeof(struct node));

if(Newnode!=NULL)

{

Newnode->data=X;

Newnode->next=p->next;

p->next->prev=Newnode;

p->next=Newnode;

Newnode->prev=p;

}

}

Routine to insert an element in the last

void insert_last(int X, List L)

{

position Newnode,p;

Newnode=(struct node*)malloc(sizeof(struct node));

if(Newnode!=NULL)

{

p=L;

while(p->next!=L)

p=p->next;

Newnode->data=X;

p->next =Newnode;

Newnode->next=L;

Newnode->prev=p;

L->prev=newnode;

}

}

Routine to delete an element from the beginning

void del_first(List L)

{

position temp;

if(L->next!=NULL)

{

temp=L->next;

L->next=temp->next;

temp->next->prev=L;

free(temp);

}

Routine to delete an element from the middle

void del_mid(int X,List L)

{

Position p, temp;

p=FindPrevious(X);

if(!IsLast(p,L))

{

temp=p->next;

p->next=temp-next;

temp->next->prev=p;

free(temp);

}

}

Routine to delete an element at the last position

void del_last(List L)

{

position p, temp;

p=L;

while(p->next!=L)

p=p->next;

temp=p;

p->next->prev=L;

L->prev=p->prev;

free(temp);

}

Advantages of Circular linked List

It allows to traverse the list starting at any point.

It allows quick access to the first and last records.

Circularly doubly linked list allows to traverse the list in either direction.

Applications of List:

1. Polynomial ADT

2.Radix sort

3.Multilist

Polynomial Manipulation

Polynomial manipulations such as addition, subtraction & differentiation etc.. can be

performed using linked list

struct poly
{

int coeff;

int power;

struct poly *next;

}*list1,*list2,*list3;

Declaration for Linked list implementation of Polynomial ADT

Creation of the Polynomial

poly create(poly*head1,poly*newnode1)

{

poly *ptr;

if(head1==NULL)

{

}

else

{

}

head1=newnode1;

return (head1);

ptr=head1;

while(ptr->next!=NULL)

ptr=ptr->next;

ptr->next=newnode1;

return(head1);

}

Addition of two polynomials

void add()

{

poly *ptr1, *ptr2, *newnode ;

ptr1= list1;

ptr2 = list2;

while(ptr1 != NULL && ptr2 != NULL)

{

newnode = (struct poly*)malloc(sizeof (struct poly));

if(ptr1 -> power = = ptr2 -> power)

{

newnode -> coeff = ptr1 -> coeff + ptr2 -> coeff;

newnode -> power = ptr1 -> power ;

newnode -> next = NULL;

list3 = create(list3, newnode);

ptr1 = ptr1 -> next;

ptr2 = ptr2 -> next;

}

else if(ptr1 -> power > ptr2 -> power)

{

}

else

{

ptr2 = ptr2 -> next;

}}}

newnode -> coeff = ptr1 -> coeff;

newnode -> power = ptr1 -> power;

newnode -> next = NULL;

list3 = create(list3, newnode);

ptr1 = ptr1 -> next;

newnode -> coeff = ptr2 -> coeff;

newnode -> power = ptr2 -> power;

newnode -> next = NULL;

list3 = create(list3, newnode);

Subtraction of two polynomial
{

void sub() poly *ptr1, *ptr2, *newnode;

ptr1 = list1;
ptr2 = list2;
while(ptr1 != NULL && ptr2 != NULL)

{

newnode = (struct poly*)malloc(sizeof (struct poly)) ;

if(ptr1->power==ptr2->power)

{

newnode->coeff=(ptr1-coeff)-(ptr2->coeff);

newnode->power=ptr1->power;

newnode->next=NULL;

list3=create(list3,newnode);

ptr1=ptr1->next;

ptr2=ptr2->next;

}

else
{

if(ptr1-power>ptr2-power)

{

}

else

{

newnode->coeff=ptr1->coeff;

newnode->power=ptr1->power;

newnode->next=NULL;

list3=create(list3,newnode);

ptr1=ptr1->next;

newnode->coeff=-(ptr2->coeff);

newnode->power=ptr2->power;

newnode->next=NULL;

list3=create(list3,newnode);

ptr2=ptr2->next;

}
}

}

Polynomial Differentiation:

void diff()

{

poly *ptr1, *newnode;

ptr1 = list1;

while(ptr1 != NULL)

{

newnode = (struct poly*)malloc(sizeof (struct poly));

newnode->coeff=(ptr1-coeff)*(ptr1->power);

newnode->power=ptr1->power-1;

newnode->next=NULL;

list3=create(list3,newnode);

ptr1=ptr1->next;

}

}

Polynomial Multiplication

void mul()

{

poly *ptr1, *ptr2, *newnode ;

ptr1= list1;

ptr2 = list2;

while(ptr1 != NULL && ptr2 != NULL)

{

newnode = (struct poly*)malloc(sizeof (struct poly));

if(ptr1 -> power = = ptr2 -> power)

{

newnode -> coeff = ptr1 -> coeff * ptr2 -> coeff;

newnode -> power = ptr1 -> power+ptr2->power; ;

newnode -> next = NULL;

list3 = create(list3, newnode);

ptr1 = ptr1 -> next;

ptr2 = ptr2 -> next;

}}

}

questions

withanswers

Linked Lists
1. In a circular linked list organization, insertion of a record involves modification of

A. One pointer

B. Two pointers

C. Three pointers

D. No pointer

[B] Suppose we want to insert node A to which we have pointer p , after pointer q then we will

Have following pointer operations

1.p->next=q->next;

2.q->next = p;

So we have to do two pointer modifications

2. Consider a singly linked list having n nodes. The data items d1, d2, …., dn are stored in the n nodes. Let Y be a pointer

to the jth node (1 ≤ j ≤ n) in which dj is stored. A new data item d stored in a node with address Y is to be inserted.

Give an algorithm to insert d into the list to obtain a list having items d1, d2, ……, dj-1, d, dj, …..dn in that order

without using the header.

Algorithm 1 insert_mid()

1: create newnode

2: newnode->next=y->next

3: newnode->data=y->data /*which is dj*/

4: y->next=newnode

5: y->data=d

Explanation:

Since we didn’t have the address of node which is previous to Y.

So insert a new node after Y.

And copy the data of Y to new node and modify data field of Y to d.

Hence we get required sequence of data as d1,d2,…,dj-1,d,dj,…dn

3. Linked lists are not suitable for data structures for which one of the following problems?

(A) Insertion sort

(B) Binary search
(C) Radix sort

(D) Polynomial manipulation

[B] For binary search, if we are using array, then we can go to middle of array by just dividing index of array by 2.

Since array is stored in contiguous memory. But that is not true in case of linked list. If you want to access middle of

list then each time you have to traverse from its head. Hence use of linked list is not good idea for binary search.

4. The concatenation of two lists is to be performed in O(1) time. Which of the following implementations of a list

should be used?

(A) singly linked list (B) doubly linked list

(C) circular doubly linked list (D) array implementation of list

[C} For merging of list you have to point next pointer of last node of first list to first node of 2nd list. To do this in

O(1) time circular double list is useful. You can go to last node 1st list by head1->next->previous. And modify this

field pointing to head2->next. And also modify head2->next->previous to head1->next.

5. (a) Let p be a pointer as shown in the figure in a singly linked list.

What do the following assignment statements achieve?

q: = p→ next

p → next: = q→ next

q → next: = (q → next) → next

(p → next) →next: = q

5a)

Que Ans

q: = p→ next cell i->cell (i+1) ->cell(i+2)->cell(i+3) p->cell i,q->cell(i+1)

p → next: = q→ next cell i->cell(i+2)->cell(i+3) & cell(i+1) ->cell(i+2)->cell(i+3)

q → next: = (q → next) → next cell i->cell(i+2)->cell(i+3) & cell(i+1)->cell(i+3)

(p → next) →next: = q cell->i->cell(i+2)->cell(i+1)->cell(i+3)

Write a constant time algorithm to insert a node with data D just before the node with address p of a singly

linked list.

Constant time algorithm is

Insert before(p)

{

n =newnode();

n->next = p->next;

p->next =n

n->data=p->data;

p->data = D;

}

As we can’t actually insert before any node to with we have a pointer in singly linked list.

So idea is to insert a node after p , copy the data of p in new node and copy new data in node p.

6. In the worst case, the number of comparisons needed to search a singly linked list of length n for a given element is

A. log2n

B. n/2

C. log2n – 1

D. n

[D] In worst case the element is in last node. So we require n comparisons in worst case.

7. In a circular linked list organization, insertion of a record involves modification of

A. One pointer

B. Two pointers

C. Three pointers

D. No pointer

[B] Suppose we want to insert node A to which we have pointer p , after pointer q then we will

Have following pointer operations

1.p->next=q->next;

2.q->next = p;

So we have to do two pointer modifications

8. Consider a singly linked list having n nodes. The data items d1, d2, …., dn are stored in the n nodes. Let Y be a pointer

to the jth node (1 ≤ j ≤ n) in which dj is stored. A new data item d stored in a node with address Y is to be inserted.

Give an algorithm to insert d into the list to obtain a list having items d1, d2, ……, dj-1, d, dj, …..dn in that order

without using the header.

Algorithm 1 insert_mid()

1: create newnode

2: newnode->next=y->next

3: newnode->data=y->data /*which is dj*/

4: y->next=newnode

5: y->data=d

Explanation:

Since we didn’t have the address of node which is previous to Y.

So insert a new node after Y.

And copy the data of Y to new node and modify data field of Y to d.

Hence we get required sequence of data as d1,d2,…,dj-1,d,dj,…dn

9. The following C function takes a singly-linked list of integers as a parameter and rearranges the elements of the list.

The function is called with the list containing the integers 1,2,3,4,5,6,7 in the given order. What will be the contents

of the list after the function completes execution?

struct node {

int value;

struct node *next;

};

void rearrange (struct node *list) {

struct node *p, *q;

int temp;

if (!list || !list -> next) return;

p = list; q = list -> next;

while (q) {

temp = p -> value; p -> value =q -> value;

q -> value = temp; p = q -> next;

q = p ? -> next : 0;

}

}

(A) 1,2,3,4,5,6,7

(B) 2,1,4,3,6,5,7

(C) 1,3,2,5,4,7,6
(D) 2,3,4,5,6,7,1

[B] The q pointer always point to next node of p. And here p is modified first. So swapping is done

10. The data blocks of a very large file in the Unix file system are allocated using

(A) contiguous allocation

(B) linked allocation

(C) indexed allocation

(D) an extension of indexed allocation

[D] The file’s inode contains pointer to first 10 data blocks.The 11th pointer in inode points at an indirect block that

contain 128 data blocks. And so on…

11. The following C function takes a singly linked list of integers as a parameter and rearranges the elements of the list.

The list is represented as pointer to structure. The function is called with the list containing integers 1, 2, 3, 4, 5, 6, 7

in the given order. What will be the contents of the list after the function completes?

struct node {int value; struct node *next;};

void rearrange(struct node *list) {

struct node *p, *q;

int temp;

if(!list || !list → next) return;

p = list; q = list → next;

while(q) {

temp = p → value;

p → value = q → value;

q → value = temp;

p = q → next;

q = p? p → next : 0;

}

}

(A) 1, 2, 3, 4, 5, 6, 7 (B) 2, 1, 4, 3, 6, 5, 7

(C) 1, 3, 2, 5, 4, 7, 6 (D) 2, 3, 4, 5, 6, 7, 1

[B] The q pointer always point to next node of p. And here p is modified first. So swapping is done only

once for each

12. Let P be a singly linked list. Let Q be the pointer to an intermediate node x in the list. What is the worst case time

complexity of the best-known algorithm to delete the node x from the list?

(A) O(n)

(B) O(log2 n)

(C) O(log n)
(D) O(1)

[A] As Q is pointing to node X.

So the following algorithm will delete the node in O(1)

Algorithm-:

Delete()

Step1. Q->data =: (Q->next)->data

Step2. temp =: Q->next (temp is temporary pointer variable of type list)

Step3. Q->next =: (Q->next)->next

Step4. delete temp

13. Suppose each set is represented as a linked list with elements in arbitrary order. Which of the operations among

union, intersection, membership, and cardinality will be the slowest?

(A) Union only

(B) intersection, membership

(C) membership, cardinality
(D) union, intersection

[D] For intersection n*n comparisons are required.

For union, just merging of two list will not work. We have to find out common elements which require again n*n

comparisons.

For membership only n comparisons are needed.

For Cardinality n comparisons. (ie. For each node check next !=NULL and increment)

14. Circularly linked list is used to represent a Queue. A single variable p is used to access the Queue. To which node

should p point such that both the operations enQueue and deQueue can be performed in constant time?

(A) Rear node

(B) Front node

(C) Not possible with a single pointer

(D) Node next to front

[A] p points to rear node

For enQueue

1: create newnode

2: newnode->next=p->next /*which is front node*/

3: p->next=newnode

4: /*rear=newnode;*/

5: p=rear

For deQueue

1:temp=p->next /*temp is pointing to front node

2: p->next=p->next->next

3:/* front=p->next*/

4:delete(temp)

UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES 9

Stack ADT – Evaluating arithmetic expressions- other applications- Queue ADT –

circular queue implementation – Double ended Queues – applications of queues

STACK

 Stack is a Linear Data Structure that follows Last In First Out(LIFO) principle.

 Insertion and deletion can be done at only one end of the stack called TOP of the stack.

 Example: - Pile of coins, stack of trays

STACK ADT:

C

B

A

STACK MODEL

TOP pointer

It will always point to the last element inserted in the stack.

For empty stack, top will be pointing to -1. (TOP = -1)

Operations on Stack (Stack ADT)

Two fundamental operations performed on the stack are PUSH and POP.

(a) PUSH:

It is the process of inserting a new element at the Top of the stack.

For every push operation:

1. Check for Full stack (overflow).

2. Increment Top by 1. (Top = Top + 1)

3. Insert the element X in the Top of the stack.

(b) POP:

It is the process of deleting the Top element of the stack.

For every pop operation:

1. Check for Empty stack (underflow).

2. Delete (pop) the Top element X from the stack

3. Decrement the Top by 1. (Top = Top - 1)

Exceptional Conditions of stack

1. Stack Overflow

 An Attempt to insert an element X when the stack is Full, is said to be stack

overflow.

 For every Push operation, we need to check this condition.

2. Stack Underflow:

 An Attempt to delete an element when the stack is empty, is said to be stack

underflow.

 For every Pop operation, we need to check this condition.

12.4 Implementation of Stack

Stack can be implemented in 2 ways.

1. Static Implementation (Array implementation of Stack)

2. Dynamic Implementation (Linked List Implementation of Stack)

12.4.1 Array Implementation of Stack

 Each stack is associated with a Top pointer.

 For Empty stack, Top = -1.

 Stack is declared with its maximum size.

Array Declaration of Stack:

#define ArraySize 5
int S [Array Size];

or

int S [5];

int IsFull (Stack S)

{ if(Top = = Arraysize – 1)

return(1);

}

int IsEmpty (Stack S)

{
if(Top = = - 1)

return(1);

}

(i) Stack Empty Operation:

 Initially Stack is Empty.

 With Empty stack Top pointer points to – 1.

 It is necessary to check for Empty Stack before deleting (pop) an element from the stack.

Routine to check whether stack is empty

(ii) Stack Full Operation:

 As we keep inserting the elements, the Stack gets filled with the elements.

 Hence it is necessary to check whether the stack is full or not before inserting a new

element into the stack.

Routine to check whether a stack is full

(ii) Push Operation

 It is the process of inserting a new element at the Top of the stack.

 It takes two parameters. Push(X, S) the element X to be inserted at the Top of the Stack

S.

 Before inserting an Element into the stack, check for Full Stack.

 If the Stack is already Full, Insertion is not possible.

 Otherwise, Increment the Top pointer by 1 and then insert the element X at the Top of the

Stack.

void Push (int X , Stack S)

{
if (Top = = Arraysize - 1)

Error(“Stack is full!!Insertion is not possible”);
else

{ Top = Top + 1;

S [Top] =X;

}

}

Routine to push an element into the stack

(iv) Pop Operation

 It is the process of deleting the Top element of the stack.

 It takes only one parameter. Pop(X).The element X to be deleted from the Top of the

Stack.

 Before deleting the Top element of the stack, check for Empty Stack.

 If the Stack is Empty, deletion is not possible.

 Otherwise, delete the Top element from the Stack and then decrement the Top pointer by

1.

Routine to Pop the Top element of the stack

void Pop (Stack S)

{
if (Top = = - 1)

Error (“Empty stack! Deletion not possible”);
else

{ X = S [Top] ;

Top = Top – 1 ;

}

}

int TopElement(Stack S)

{
if(Top==-1)

{
Error(“Empty stack!!No elements”);
return 0;

}
else

return S[Top];
}

(v) Return Top Element

 Pop routine deletes the Top element in the stack.

 If the user needs to know the last element inserted into the stack, then the user can return

the Top element of the stack.

 To do this, first check for Empty Stack.

 If the stack is empty, then there is no element in the stack.

 Otherwise, return the element which is pointed by the Top pointer in the Stack.

Routine to return top Element of the stack

Implementation of stack using Array

/* static implementation of stack*/

#include<stdio.h>

#include<conio.h>

#define size 5

int stack [size];

int top;

void push()

{
int n ;
printf("\n Enter item in stack") ;

scanf(" %d " , &n) ;

if(top = = size - 1)

{

}

else

{

printf("\nStack is Full") ;

top = top + 1 ;

stack [top] = n ;

}

}
void pop()

{
int item;

if(top = = - 1)

{

}

else

{

}

}

printf("\n Stack is empty");

item = stack[top] ;

printf("\n item popped is = %d" , item);

top - -;

void display()

{
int i;
printf("\n item in stack are");

for(i = top; i > = 0; i --)

printf("\n %d", stack[i]);

}
void main()

{
char ch,ch1;
ch = 'y';
ch1 = 'y';

top = -1;

clrscr();

while(ch !='n')

{
push();
printf("\n Do you want to push any item in stack y/n");
ch=getch();

}
display();

while(ch1!='n')

{
printf("\n Do you want to delete any item in stack y/n");
ch1=getch();
pop();

}

display();

getch();}

UTPUT:

Enter item in stack20

Do you want to push any item in stack y/n
Enter item in stack25

Do you want to push any item in stack y/n
Enter item in stack30

Stack is Full

Do you want to push any item in stack y/n

item in stack are

25

20

15

10

5

Do you want to delete any item in stack y/n

item popped is = 25

Do you want to delete any item in stack y/n

item popped is = 20

Do you want to delete any item in stack y/n

item popped is = 15

item in stack are
10

5

Linked list implementation of Stack

 Stack elements are implemented using SLL (Singly Linked List) concept.

 Dynamically, memory is allocated to each element of the stack as a node.

Type Declarations for Stack using SLL

struct node;

typedef struct node *stack;

typedef struct node *position;

stack S;

struct node{ int

data; position

next;};

int IsEmpty(Stack S);

void Push(int x, Stack S);

void Pop(Stack S);

int TopElement(Stack S);

S

int IsEmpty(Stack S)

{

if (S -> next = = NULL)

return (1);

}

NULL HEADER

NULL

(i) Stack Empty Operation:

 Initially Stack is Empty.

 With Linked List implementation, Empty stack is represented as S -> next = NULL.

 It is necessary to check for Empty Stack before deleting (pop) an element from the stack.

Routine to check whether the stack is empty

EMPTY STACK

(ii) Push Operation

 It is the process of inserting a new element at the Top of the stack.

 With Linked List implementation, a new element is always inserted at the Front of the

List.(i.e.) S -> next.

 It takes two parameters. Push(X, S) the element X to be inserted at the Top of the StackS.

 Allocate the memory for the newnode to be inserted.

 Insert the element in the data field of the newnode.

 Update the next field of the newnode with the address of the next node which is stored

in the S -> next.

S

newnode

Before Insertion

40

10 20 30

Header

void push(int X, Stack S)

{

Position newnode, Top;

newnode = malloc (sizeof(struct node));

newnode -> data = X;

newnode -> next = S -> next;

S -> next = newnode;

Top = newnode;

}

After Insertion

TOP

NULL 10 20 30 40

Header

Push routine /*Inserts element at front of the list

S

(iii) Pop Operation

 It is the process of deleting the Top element of the stack.

 With Linked List implementations, the element at the Front of the List

(i.e.) S -> next is always deleted.

 It takes only one parameter. Pop(X).The element X to be deleted from the Front of the

List.

 Before deleting the front element in the list, check for Empty Stack.

 If the Stack is Empty, deletion is not possible.

 Otherwise, make the front element in the list as “temp”.

 Update the next field of header.

 Using free () function, Deallocate the memory allocated for temp node.

fter Deletion

PANIMALA

30 40

Header

void Pop(Stack S)

{
Position temp, Top;
Top = S -> next;

if(S -> next = = NULL)

Error(“empty stack! Pop not possible”);
else

{

Temp = S -> next;
S -> next = temp -> next;

free(temp);

Top = S -> next;

} }

NULL

www.padeepz.net

20 10 NULL

TOP

Before Deletion

Pop routine /*Deletes the element at front of list

S

NULL 10

A

20 30

HEADER

10 20 30 40

Header

S
R

http://www.padeepz.net/

10 20 30 40

Header

int TopElement(Stack S)

{

if(S->next==NULL)

{

error(“Stack is empty”);

return 0;

else

return S->next->data;

}

NULL

(iv) Return Top Element

 Pop routine deletes the Front element in the List.

 If the user needs to know the last element inserted into the stack, then the user can

return the Top element of the stack.

 To do this, first check for Empty Stack.

 If the stack is empty, then there is no element in the stack.

 Otherwise, return the element present in the S -> next -> data in the List.

Routine to Return Top Element

S

TOP

Implementation of stack using 'Linked List'

/* Dynamic implementation of stack*/

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

typedef struct node * position ;

struct node

{

int data ;
position next ;

} ;

void create() ;

void push() ;

void pop() ;

void display() ;

position s, newnode, temp, top ; /* Global Declarations */

void main() {

/* Main Program */

int op ;

clrscr() ;

do {

printf("\n ### Linked List Implementation of STACK Operations ### \n\n") ;
printf("\n Press 1-create\n 2-Push\n 3-Pop\n 4-Display\n5-Exit\n") ;

printf("\n Your option ? ") ;

scanf(" % d ", & op) ;

switch (op) {

case 1:

create() ;

break ;
case 2:

push();

break;
case 3:

pop();
break;

case 4:

display();

break;

case 5:

exit(0);

}

}while(op<5);

getch();

}
void create()

{

int n,i;
s=NULL;

printf("Enter the no of nodes to be created\n");

scanf("%d",&n);

newnode=(struct node*)malloc(sizeof(struct node));
printf("Enter the data\t");
scanf("%d",&newnode->data);

newnode->next=NULL;

top=newnode;

s=newnode;

for(i=2;i<=n;i++)

{
newnode=(struct node*)malloc(sizeof(struct node));

printf("Enter the data\t");

scanf("%d",&newnode->data);

newnode->next=top;

s=newnode;

top=newnode;

} }

void display()

{ top=s;

while(top!=NULL)

{
printf("%d->",top->data);
top=top->next;

}

printf("NULL\n");

}

void push()

{ top=s;

newnode=(struct node*)malloc(sizeof(struct node));

printf("Enter the data\t");

scanf("%d",&newnode->data);

newnode->next=top;

top=newnode;

s=newnode;

display();

}
void pop()
{

top=s;

if(top==NULL)

printf("Empty stack\n\n");

else

{

temp=top;
printf("Deleted element is \t %d\n\n",top->data);

s=top->next;

free(temp);

display();

} }

Output

Linked List Implementation of STACK Operations ###

Press 1-create

2-Push

3-Pop

4-Display

5-Exit

Your option ? 1

Enter the no of nodes to be created5
Enter the data 10

Enter the data20

Enter the data30

Enter the data40

Enter the data50

Linked List Implementation of STACK Operations ###

Press 1-create

2-Push
3-Pop

4-Display

5-Exit

Your option ? 4

50->40->30->20->10->NULL

Linked List Implementation of STACK Operations ###

Press 1-create

2-Push
3-Pop

4-Display

5-Exit

Your option ?2

Enter the data60

Your option ? 4

60->50->40->30->20->10->NULL

Your option ?2

Enter the data70

Your option ? 4

70->60->50->40->30->20->10->NULL

Your option ?3

Deleted element is70

Your option ? 4

50->40->30->20->10->NULL

Applications of Stack

The following are some of the applications of stack:

1. Evaluating the arithmetic expressions

o Conversion of Infix to Postfix Expression

o Evaluating the Postfix Expression

2. Balancing the Symbols

3. Function Call

4. Tower of Hanoi

5. 8 Queen Problem

Evaluating the Arithmetic Expression

There are 3 types of Expressions

 Infix Expression

 Postfix Expression

 Prefix Expression

INFIX:

The arithmetic operator appears between the two operands to which it is being

applied.

POSTFIX:

The arithmetic operator appears directly after the two operands to which it applies.

Also called reverse polish notation.

PREFIX:

The arithmetic operator is placed before the two operands to which it applies. Also

called polish notation.

Evaluating Arithmetic Expressions

1. Convert the given infix expression to Postfix expression

2. Evaluate the postfix expression using stack.

Algorithm to convert Infix Expression to Postfix Expression:

Read the infix expression one character at a time until it encounters the delimiter “#”

Step 1: If the character is an operand, place it on the output.

Step 2: If the character is an operator, push it onto the stack. If the stack operator has a higher or

equal priority than input operator then pop that operator from the stack and place it onto the

output.

Step 3:If the character is left parenthesis, push it onto the stack

Step 4:If the character is a right parenthesis, pop all the operators from the stack till it encounters

left parenthesis, discard both the parenthesis in the output.

E.g. Consider the following Infix expression: - A*B+(C-D/E)#

Read char

Stack

Output

A

A

*

*

A

B

+

*

AB

+

+

AB*

(

(

+

AB*

AB*C

AB*C

AB*CD

AB*CD

AB*CDE

AB*CDE/-

Read char

C

-

D

/

E

)

Stack

(

+

-

(

+

-

(

+

/

-

(

+

/

-

(

+

Output

/

-

(

+

Read char Stack Output

AB*CDE/-+

Output: Postfix expression:- AB*CDE/-+

Evaluating the Postfix Expression

Algorithm to evaluate the obtained Postfix Expression

Read the postfix expression one character at a time until it encounters the delimiter „#‟

Step 1: If the character is an operand, push its associated value onto the stack.

Step 2: If the character is an operator, POP two values from the stack, apply the operator to

them and push the result onto the stack.

E.g consider the obtained Postfix expression:- AB*CDE/-+

Operand Value

A 2

B 3

C 4

D 4

E 2

Char Read

Stack

A

2

B

3

2

Char Read Stack

* 6

C
4

6

D

4

4

6

E

/

-
2

6

+ 8

OUTPUT = 8

Example 2: Infix expression:- (a+b)*c/d+e/f#

Read char

Stack

Output

(

(

a

(

a

2

4

6

ab+c

ab+

/

/

+

b

)

*

*

c

*

/

d

+

+

21

ab+c*d/

ab+c*d

ab+c*

ab+

ab

a

+

(

+

(

e

+

ab+c*d/e

/

ab+c*d/e

f

ab+c*d/ef

ab+c*d/ef/+

Postfix expression:- ab+c*d/ef/+

Evaluating the Postfix Expression

Operand Value

a 1

b 2

c 4

d 2

e 6

f 3

/

+

/

+

Char Read Stack

a

1

b

2

1

+ 3

c

4

3

* 12

d

2

12

/ 6

e

6

6

F

/

2

6

+

8

Output = 8

3

6

6

Infix to Postfix Conversion Output

#define SIZE 50 /* Size of Stack */
#include <ctype.h>
char s[SIZE];
int top=-1; /* Global declarations */

void push(char elem)

{

s[++top]=elem;

}

char pop()

{

return(s[top--]);

}

int pr(char elem)

{ /* Function for precedence */

switch(elem)

{

case '#': return 0;

case '(': return 1;

case '+':

case '-': return 2;

case '*':

case '/': return 3;

}

return 0;

}

Void main()

{ /* Main Program */

char infx[50],pofx[50],ch,elem;

int i=0,k=0;

printf("\nRead the Infix Expression ? ");

scanf("%s",infx);

push('#');

while((ch=infx[i++]) != '\0')

{

if(ch == '(') push(ch);

else

if(isalnum(ch)) pofx[k++]=ch;

else

if(ch == ')')

{

while(s[top] != '(')

Read the Infix Expression ?

(a+b)-(c-d)

Given Infix Expn: (a+b)*(c-d)

Postfix Expn: ab+cd-*

pofx[k++]=pop();

elem=pop(); /* Remove */

}
else

{ /* Operator */
while(pr(s[top]) >= pr(ch))

pofx[k++]=pop();

push(ch);
}

}
while(s[top] != '#') /* Pop from stack

till empty

pofx[k++]=pop();
pofx[k]='\0'; /* Make pofx as valid

string */

printf("\n\nGiven Infix Expn: %s Postfix

Expn: %s\n",infx,pofx);

}

Towers of Hanoi

Towers of Hanoi can be easily implemented using recursion. Objective of the problem is

moving a collection of N disks of decreasing size from one pillar to another pillar. The

movement of the disk is restricted by the following rules.

Rule 1 : Only one disk could be moved at a time.

Rule 2 : No larger disk could ever reside on a pillar on top of a smaller disk.

Rule 3 : A 3rd pillar could be used as an intermediate to store one or more disks, while they

were being moved from source to destination.

Tower 1 Tower 2 Tower 3

A B C

Initial Setup of Tower of Hanoi

void hanoi (int n, char s, char d, char i)

{

/* n no. of disks, s source, d destination i intermediate

*/ if (n = = 1)

{

print (s, d);

return;

}

else

{

hanoi (n - 1, s, i, d);

print (s, d)

hanoi (n-1, i, d, s);

return;

}

}

Recursive Solution

N - represents the number of disks.

Step 1. If N = 1, move the disk from A to C.

Step 2. If N = 2, move the 1st disk from A to B. Then move the 2nd disk from A to C, The move

the 1st disk from B to C.

Step 3. If N = 3, Repeat the step (2) to more the first 2 disks from A to B using C as

intermediate. Then the 3rd disk is moved from A to C. Then repeat the step (2) to move 2 disks

from B to C using A as intermediate.

In general, to move N disks. Apply the recursive technique to move N - 1 disks from A to B

using C as an intermediate. Then move the Nth disk from A to C. Then again apply the recursive

technique to move N - 1 disks from B to C using A as an intermediate

Recursive Routine for Towers of Hanoi

Source Pillar Intermediate Pillar Destination Pillar

Tower 1 Tower 2 Tower 3

1. Move Tower1 to Tower3

Tower 1 Tower 2 Tower 3

2. Move Tower1 to Tower2

Tower 1 Tower 2 Tower 3

3. Move Tower 3 to Tower 2

Tower 1 Tower 2 Tower 3

4. Move Tower 1 to Tower 3

Tower 1 Tower 2 Tower 3

Tower 1

Main() Balance() Push()

Call

balance()
Call push()

Tower 1 Tower 2 Tower 3

6. Move Tower 2 to Tower 3

Tower 1 Tower 2 Tower 3

7. Move Tower 1 to Tower 3

Since disks are moved from each tower in a LIFO manner, each tower may be considered

as a Stack. Least Number of moves required solving the problem according to our algorithm is

given by,

O(N)=O(N-1)+1+O(N-1) =2N-1

Function Calls

When a call is made to a new function all the variables local to the calling routine need to

be saved, otherwise the new function will overwrite the calling routine variables. Similarly the

current location address in the routine must be saved so that the new function knows where to go

after it is completed.

Tower 2

Tower 3

int fact(int n)

{

int S;

if(n==1)

return(1);

else

S = n * fact(n – 1);

return(S)

}

Recursive Function to Find Factorial

Balancing the Symbols

 Compilers check the programs for errors, a lack of one symbol will cause an error.

 A Program that checks whether everything is balanced.

 Every right parenthesis should have its left parenthesis.

 Check for balancing the parenthesis brackets braces and ignore any other character.

Algorithm for balancing the symbols

Read one character at a time until it encounters the delimiter `#'.

Step 1 : - If the character is an opening symbol, push it onto the stack.

Step 2 : - If the character is a closing symbol, and if the stack is empty report an error as

missing opening symbol.

Step 3 : - If it is a closing symbol and if it has corresponding opening symbol in the stack, POP

it from the stack. Otherwise, report an error as mismatched symbols.

Step 4 : - At the end of file, if the stack is not empty, report an error as Missing closing symbol.

Otherwise, report as balanced symbols.

E.g. Let us consider the expression ((B*B)-{4*A*C}/[2*A]) #

((B*B)-{4*A*C}/[2*A]) #

Read Character Stack

(

(

(

(

(

)

(

{

{

(

}

(

[

[

(

]

(

)

Empty stack, hence the symbols the balanced in the given expression.

Example for unbalanced symbols:

Front (F) = - 1

Rear (R) = - 1

QUEUES:

 Queue is a Linear Data Structure that follows First in First out (FIFO) principle.

 Insertion of element is done at one end of the Queue called “Rear “end of the Queue.

 Deletion of element is done at other end of the Queue called “Front “end of the Queue.

 Example: - Waiting line in the ticket counter.

Front End

Deletion

RearEnd

Queue Model

Front Pointer:-

It always points to the first element inserted in the Queue.

Rear Pointer:-

It always points to the last element inserted in the Queue.

For Empty Queue:-

Operations on Queue

Fundamental operations performed on the queue are

1. EnQueue

2. DeQueue

Insertion

QUEUE Q

(i) EnQueue operation:-

 It is the process of inserting a new element at the rear end of the Queue.

 For every EnQueue operation

o Check for Full Queue

o If the Queue is full, Insertion is not possible.

o Otherwise, increment the rear end by 1 and then insert the element in the rear end

of the Queue.

(ii) DeQueue Operation:-

 It is the process of deleting the element from the front end of the queue.

 For every DeQueue operation

o Check for Empty queue

o If the Queue is Empty, Deletion is not possible.

o Otherwise, delete the first element inserted into the queue and then increment the

front by 1.

Exceptional Conditions of Queue

 Queue Overflow

 Queue Underflow

(i) Queue Overflow:

 An Attempt to insert an element X at the Rear end of the Queue when the

Queue is full is said to be Queue overflow.

 For every Enqueue operation, we need to check this condition.

(ii) Queue Underflow:

 An Attempt to delete an element from the Front end of the Queue when the

Queue is empty is said to be Queue underflow.

 For every DeQueue operation, we need to check this condition.

Implementation of Queue

Queue can be implemented in two ways.

1. Implementation using Array (Static Queue)

2. Implementation using Linked List (Dynamic Queue)

Array Declaration of Queue:

#define ArraySize 5

int Q [ArraySize];

or

int Q [5];

Initial Configuration of Queue:

(i) Queue Empty Operation:

Initially Queue is Empty.

 With Empty Queue, Front (F) and Rear (R) points to – 1.

It is necessary to check for Empty Queue before deleting (DeQueue) an element from the

Queue (Q).

int IsEmpty (Queue Q)

{

if((Front = = - 1) && (Rear = = - 1))

return (1);

}

int IsFull(Queue Q)

{

if (Rear = = ArraySize - 1)

return (1);

}

Routine to check for Empty Queue

int IsEmpty (Queue Q)

{

if((Front = = - 1) && (Rear = = - 1))

return (1);

}

(ii) Queue Full Operation

As we keep inserting the new elements at the Rear end of the Queue, the Queue becomes

full.

When the Queue is Full, Rear reaches its maximum Arraysize.

For every Enqueue Operation, we need to check for full Queue condition.

Routine to check for Full Queue

(iii) Enqueue Operation

It is the process of inserting a new element at the Rear end of the Queue.

It takes two parameters, Enqueue(X, Q). The elements X to be inserted at the Rear end of

the Queue Q.

Before inserting a new Element into the Queue, check for Full Queue.

If the Queue is already Full, Insertion is not possible.

Otherwise, Increment the Rear pointer by 1 and then insert the element X at the Rear end

of the Queue.

If the Queue is Empty, Increment both Front and Rear pointer by 1 and then insert the

element X at the Rear end of the Queue.

Routine to Insert an Element in a Queue

void EnQueue (int X , Queue Q)

{
if (Rear = = Arraysize - 1)

print (" Full Queue !!!!. Insertion not

possible");

else if (Rear = = - 1)

{
Front = Front + 1;

Rear = Rear + 1;
Q [Rear] = X;

}
else

{

Rear = Rear + 1;
Q [Rear] = X;

}

}

(iv) DeQueue Operation

It is the process of deleting a element from the Front end of the Queue.

It takes one parameter, DeQueue (Q). Always front element in the Queue will be deleted.

Before deleting an Element from the Queue, check for Empty Queue.

If the Queue is empty, deletion is not possible.

If the Queue has only one element, then delete the element and represent the empty queue

by updating Front = - 1 and Rear = - 1.

If the Queue has many Elements, then delete the element in the Front and move the Front

pointer to next element in the queue by incrementing Front pointer by 1.

ROUTINE FOR DEQUEUE

void DeQueue (Queue Q)

{
if (Front = = - 1)

print (" Empty Queue !. Deletion not possible ");

else if(Front = = Rear)

{
X = Q [Front];

Front = - 1;
Rear = - 1;

}
else

{

X = Q [Front];

Front = Front + 1 ;

}

}

Array implementation of Queue

#include<stdio.h>

#include<conio.h>

#define SIZE 5

int front = - 1;

int rear = - 1;

int q[SIZE];

void insert();

void del();

void display();

void main()

{
int choice;

clrscr();
do

{
printf("\t Menu");
printf("\n 1. Insert");

printf("\n 2. Delete");

printf("\n 3. Display ");

printf("\n 4. Exit");

printf("\n Enter Your Choice:");

scanf("%d", &choice);

switch(choice)

{
case 1:

case 2:

case 3:

case 4:

}

insert();

display();

break;

del();

display();

break;

display();

break;

printf("End of Program. .. !!!!");

exit(0);

}while(choice != 4);}
void insert()

{

int no;

printf("\n Enter No.:");

scanf("%d", &no);

if(rear < SIZE - 1)

{

}

else

{

}}

void del()

{

q[++rear]=no;

if(front = = - 1)

front=0;// front=front+1;

printf("\n Queue overflow");

if(front = = - 1)

{

}

else

{

}

printf("\n Queue Underflow");
return;

printf("\n Deleted Item:-->%d\n", q[front]);

if(front = = rear)

{ output

}

else

{

}}

void display()

{

Front = - 1;
Rear = - 1;

Front = front + 1;

int i;
if(front = = - 1)

{
printf("\nQueue is empty ... ");

return;

}
for(i = front; i<=rear; i++)

printf("\t%d",q[i]);}

Front Rear

NULL 40 30 20 10

Header

Linked List Implementation of Queue

 Queue is implemented using SLL (Singly Linked List) node.

 Enqueue operation is performed at the end of the Linked list and DeQueue

operation is performed at the front of the Linked list.

 With Linked List implementation, for Empty queue

Front = NULL & Rear = NULL

Linked List representation of Queue with 4 elements

Q

Declaration for Linked List Implementation of Queue ADT

struct node;

typedef struct node * Queue;

typedef struct node * position;

int IsEmpty (Queue Q);

Queue CreateQueue (void);

void MakeEmpty (Queue Q);

void Enqueue (int X, Queue Q);

void Dequeue (Queue Q);

struct node

{

int data ;

position next;

}* Front = NULL, *Rear = NULL;

(i) Queue Empty Operation:

 Initially Queue is Empty.

 With Linked List implementation, Empty Queue is represented as S -> next = NULL.

 It is necessary to check for Empty Queue before deleting the front element in the Queue.

ROUTINE TO CHECK WHETHER THE QUEUE IS EMPTY

int IsEmpty (Queue Q

{
Q

return (1);
}

(ii) EnQueue Operation

Empty Queue

 It is the process of inserting a new element at the Rear end of the Queue.

 It takes two parameters, EnQueue (int X , Queue Q). The elements X to be inserted into

the Queue Q.

 Using malloc () function allocate memory for the newnode to be inserted into the Queue.

 If the Queue is Empty, the newnode to be inserted will become first and last node in the
list. Hence Front and Rear points to the newnode.

 Otherwise insert the newnode in the Rear -> next and update the Rear pointer.

Routine to EnQueue an Element in Queue

void EnQueue (int X, Queue Q)

{
struct node *newnode;
newnode = malloc (sizeof (struct node));
if (Rear = = NULL)

{

Q -> next = newnode;
Front = newnode;

Rear = newnode;

}
else

{

NULL Header

www.padeepz.net
Rear = newnode;

www.padeepz.net

NULL Header

Header

Front Rear

NULL 40 30 20

Header

}
}

Q

 Q

Empty Queue

Before Insertion

(iii) DeQueue Operation

Front Rear

After Insertion

It is the process of deleting the front element from the Queue.
It takes one parameter, Dequeue (Queue Q). Always element in the front (i.e) element pointed
by Q -> next is deleted always.

Element to be deleted is made “temp”.

If the Queue is Empty, then deletion is not possible.

If the Queue has only one element, then the element is deleted and Front and Rear pointer is

made NULL to represent Empty Queue.

Otherwise, Front element is deleted and the Front pointer is made to point to next node in the list.

The free () function informs the compiler that the address that temp is pointing to, is unchanged

but the data present in that address is now undefined.

Q

http://www.padeepz.net/
http://www.padeepz.net/

Routine to DeQueue an Element from the Queue

void DeQueue (Queue Q)

{
struct node *temp;
if (Front = = NULL)

Error (“Empty Queue!!! Deletion not possible.”);

else if (Front = = Rear)

{
temp = Front;
Q -> next = NULL;

Front = NULL;

Rear = NULL;

free (temp);

}

else

{
temp = Front;
Q -> next = temp -> next;

Front = Front Next;

free (temp);

}

}

Linked list implementation of Queue

#include<stdio.h>
#include<conio.h>
void enqueue();
void dequeue();
void display();

typedef struct node *position;
position front=NULL,rear=NULL,newnode,temp,p;

struct node

{

int data;

position next;

};

void main()
{

int choice;

clrscr();

do

{
printf("1.Enqueue\n2.Dequeue\n3.display\n4.exit\n");

printf("Enter your choice\n\n");

scanf("%d",&choice);

switch(choice)

{

case 1:

enqueue();

break;

case 2:
dequeue();
break;

case 3:

display();

break;
case 4:

exit(0);
}
}

while(choice<5);
}

void enqueue()

{
newnode=(struct node*)malloc(sizeof(struct node));
printf("\n Enter the data to be enqueued\n");

scanf("%d",&newnode->data);

newnode->next=NULL;

if(rear==NULL)

front=rear=newnode;

else {

rear->next=newnode;

rear=newnode;
}

display();

}
void dequeue()

{
if(front==NULL)

printf("\nEmpty queue!!!!! Deletion not possible\n");

else if(front==rear)

{

printf("\nFront element %d is deleted from queue!!!! now queue is

empty!!!! no more deletion possible!!!!\n",front->data);

front=rear=NULL;

}

else

{
temp=front;
front=front->next;

printf("\nFront element %d is deleted from queue!!!!\n",temp->data);

free(temp);

}

display();

}

void display()

{
p=front;
while(p!=NULL)

{
printf("%d -> ",p->data);

p=p->next;
}
printf("Null\n");

}

Output

Applications of Queue

1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

2. In real life, Call Center phone systems will use Queues, to hold people calling them in an

order, until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the same order

as they arrive, First come first served.

4. Batch processing in operating system.

5. Job scheduling Algorithms like Round Robin Algorithm uses Queue.

Drawbacks of Queue (Linear Queue)

 With the array implementation of Queue, the element can be deleted logically only by

moving Front = Front + 1.

 Here the Queue space is not utilized fully.

To overcome the drawback of this linear Queue, we use Circular Queue.

CIRCULAR QUEUE

In Circular Queue, the insertion of a new element is performed at the very first location of the

queue if the last location of the queue is full, in which the first element comes just after the last

element.

 A circular queue is an abstract data type that contains a collection of data which allows

addition of data at the end of the queue and removal of data at the beginning of the

queue.

 Circular queues have a fixed size.

 Circular queue follows FIFO principle.

 Queue items are added at the rear end and the items are deleted at front end of the circular

queue

 Here the Queue space is utilized fully by inserting the element at the Front end if the rear

end is full.

Operations on Circular Queue

Fundamental operations performed on the Circular Queue are

 Circular Queue Enqueue

 Circular Queue Dequeue

F

Formula to be used in Circular Queue

For Enqueue Rear = (Rear + 1) % ArraySize

For Dequeue Front = (Front + 1) % ArraySize

(i) Circular Queue Enqueue Operation

It is same as Linear Queue EnQueue Operation (i.e) Inserting the element at the Rear end.

First check for full Queue.

If the circular queue is full, then insertion is not possible.

Otherwise check for the rear end.

If the Rear end is full, the elements start getting inserted from the Front end.

Routine to Enqueue an element in circular queue

void Enqueue (int X, CircularQueue CQ)

{
if(Front = = (Rear + 1) % ArraySize)

Error(“Queue is full!!Insertion not possible”);
else if(Rear = = -1)

{
Front = Front + 1;
Rear = Rear + 1;

CQ[Rear] = X;

}
else

{

Rear = (Rear + 1) % Arraysize;

CQ[Rear] = X;

}

}

Circular Queue DeQueue Operation

It is same as Linear Queue DeQueue operation (i.e) deleting the front element.

First check for Empty Queue.

If the Circular Queue is empty, then deletion is not possible.

If the Circular Queue has only one element, then the element is deleted and Front and Rear

pointer is initialized to - 1 to represent Empty Queue.

Otherwise, Front element is deleted and the Front pointer is made to point to next element in the

Circular Queue.

F, R

F= -1,R= --1

Routine To DeQueue An Element In Circular Queue

void DeQueue (CircularQueue CQ)

{
if(Front== - 1)

Empty(“Empty Queue!”);

else if(Front==rear)

{
X=CQ[Front];
Front=-1;

Rear=-1;

}
else

{
X=CQ[Front];
Front=(Front+1)%Arraysize;

}}

Implementation of Circular Queue

#include<stdio.h>

#include<conio.h>

#define max 3

void insert(); void delet(); void display();

int q[10],front=0,rear=-1;

void main()

{ int ch;

clrscr();

printf("\nCircular Queue operations\n"); printf("1.insert\n2.delete\n3.display\n4.exit\n");

while(1)

{

printf("Enter your choice:");
scanf("%d",&ch);

switch(ch)

{

case 1:
insert(); break;

case 2:
delet(); break;

case 3:

display(); break;
case 4:

exit();
default:

printf("Invalid option\n");

}}}

void insert()

{

int x;

if((front==0&&rear==max-1)||(front>0&&rear==front-1))

printf("Queue is overflow\n");

else
{

printf("Enter element to be insert:");

scanf("%d",&x);

if(rear==max-1&&front>0)

{ rear=0;

q[rear]=x;

}

else

{

if((front==0&&rear==-1)||(rear!=front-1))

q[++rear]=x;

} }}

void delet()

{
int a;

if((front==0)&&(rear==-1))

printf("Queue is underflow\n");

if(front==rear)

{

a=q[front];

rear=-1;

front=0;

}

else if(front==max-1)

{
a=q[front];

front=0;

}

else
a=q[front++];

printf("Deleted element is:%d\n",a);

}
void display()
{
int i,j; if(front==0&&rear==-1)

printf("Queue is underflow\n");

if(front>rear) {

for(i=0;i<=rear;i++)

printf("\t%d",q[i]);

for(j=front;j<=max-1;j++)

printf("\t%d",q[j]);

printf("\nrear is at %d\n",q[rear]);

printf("\nfront is at %d\n",q[front]); }

else

{
for(i=front;i<=rear;i++)

printf("\t%d",q[i]); printf("\nrear

is at %d\n",q[rear]); printf("\nfront

is at %d\n",q[front]);

}

printf("\n");

}

OUTPUT

DOUBLE-ENDED QUEUE (DEQUE)

In DEQUE, insertion and deletion operations are performed at both ends of the Queue.

Exceptional Condition of DEQUE

(i) Input Restricted DEQUE

Here insertion is allowed at one end and deletion is allowed at both ends.

Deletion

 Insertion

 Deletion

Front Rear

(ii) Output Restricted DEQUE

Here insertion is allowed at both ends and deletion is allowed at one end.

Insertion

Deletion

Insertion

Front Rear

Operations on DEQUE

Four cases for inserting and deleting the elements in DEQUE are

1. Insertion At Rear End [same as Linear Queue]

2. Insertion At Front End

3. Deletion At Front End [same as Linear Queue]

4. Deletion At Rear End

Case 1: Routine to insert an element at Rear end

void Insert_Rear (int X, DEQUE DQ)

{
if(Rear = = Arraysize - 1)

Error(“Full Queue!!!! Insertion not possible”);
else if(Rear = = -1)

{

Front = Front + 1;

Rear = Rear + 1;

DQ[Rear] = X;

}

else

{

Rear = Rear + 1;

DQ[Rear] = X;

}

}

Case 2: Routine to insert an element at Front end

void Insert_Front (int X, DEQUE DQ)

{
if(Front = = 0)
Error(“Element present in Front!!!!! Insertion not possible”);

else if(Front = = -1)

{

Front = Front + 1;
Rear = Rear + 1;

DQ[Front] = X;

}
else

{
Front = Front - 1;

DQ[Front] = X;

}

}

Case 3: Routine to delete an element from Front end

void Delete_Front(DEQUE DQ)

{
if(Front = = - 1)

Error(“Empty queue!!!! Deletion not possible”);

else if(Front = = Rear)

{
X = DQ[Front];

Front = - 1;
Rear = - 1;

}
else

{
X = DQ [Front];

Front = Front + 1;

}

}

Case 4: Routine to delete an element from Rear end

void Delete_Rear(DEQUE DQ)

{

if(Rear = = - 1)

Error(“Empty queue!!!! Deletion not possible”);

else if(Front = = Rear)

{

X = DQ[Rear];

Front = - 1;

Rear = - 1;

}

else

{

X = DQ[Rear];

Rear = Rear - 1;

}

}

Gate questions and

answers

Stacks and Queues
1. Compute the postfix equivalent of the following infix arithmetic expression where a+b*c+d*e↑f; where ↑ represents

exponentiation. Assume normal operator precedence.

Infix expression postfix operation stack

1 a+b*c+d*e↑f

2 +b*c+d*e↑f a

3 b*c+d*e↑f a +

4 *c+d*e↑f ab +

5 c+d*e↑f ab +*

6 +d*e↑f abc +*

7 d*e↑f abc*+ +

8 *e↑f abc*+d +

9 e↑f abc*+d +*

10 ↑f abc*+de +*

11 f abc*+de +* ↑

12 abc*+def +* ↑

So postfix expression will be (after emptying the stack)

abc*+def↑*+

2. Suppose one character at a time comes as an input from a string of letters. There is an option either to (i) print the

incoming letter or to (ii) put the incoming letter on to a stack. Also a letter from top of the stack can be

popped out at any time and printed. The total number of total distinct words that can be formed out of a string

of three letters in this fashion, is

(A)

(B)

(C)

Total no of distict word can be 5.

because total no words starting with a would be 2. (abc ,acb)

Total no of words starting with 2 (bca,bac)

Total no of words starting with c will be 1 (cba) because to print c as first letter we have to push a and b in stack

So total no of words formed = 2+2+1

3. The following sequence of operations is performed on a stack :

PUSH (10), PUSH (20), POP, PUSH (10), PUSH (20), POP, POP, POP, PUSH (20), POP.

The sequence of values popped out is:

A. 20, 10, 20, 10, 20
B. 20, 20, 10, 10, 20

C. 10, 20,20,10,20

D. 20,20,10,20,10
E. None of the above

[B]

String Status of stack Status of array(output)

Push(10) 10

Push(20) 10 20

Pop 10 20

Push(10) 10 10 20

Push(20) 10 10 20 20

Pop 10 10 20 20

Pop 10 20 20 10

Pop 20 20 10 10

Push(20) 20 20 20 10 10

Pop 20 20 10 10 20

4. A stack is use to pass parameters to procedures in a procedure call.

(a) If a procedure P has two parameters as described in procedure definition:

procedure P(var x: integer; y: integer);

and if P is called by:

P(a,b)

State precisely in a sentence what is pushed onto stack for parameters a and b.

[QUESTION IS HIGHLY AMBIGUOUS]

In the generated code for the body of procedure P, how will the addressing of formal parameters y and y differ?

5. Which of the following permutation can be obtained in the output (in the same order) using a stack assuming that the

input is the sequence1, 2, 3, 4, 5 in that order?

(A) 3, 4, 5, 1, 2

(B) 3, 4, 5, 2, 1

(C) 1, 5, 2, 3, 4
(D) 5, 4, 3, 1, 2

[B] As it can be verified as- push(1) push(2) push(3) pop push(4) pop push(5) pop pop pop

6.

The postfix expression for the infix expression

A + B*(C+D)/F + D*E is

(a) AB+CD+*F/D+E*

(b) ABCD+*F/DE*++

(c) A*B+CD/F*DE++
(d) A+*BCD/F*DE++

Possible Answer:

Infix expression Post fix operation Operater stack

A+B*(C+D)/F+D*E

+B*(C+D)/F+D*E A

B*(C+D)/F+D*E A +

*(C+D)/F+D*E AB +

(C+D)/F+D*E AB +

C+D)/F+D*E AB +*(

+D)/F+D*E ABC

D)/F+D*E ABCD

)/F+D*E ABCD +*(+

/F+D*E ABCD+ +*

F+D*E ABCD+* +/

+D*E ABCD+*F +/

D*E ABCD+*F/+ +

*E ABCD+*F/+ +*

E ABCD+*F/+DE +*

 ABCD+*F/+DE*+

7. Consider the following statements.

i First-in-first-out types of computations are efficiently supported by STACKS.

ii Implementing LISTS on linked lists is more efficient than implementing LISTS on an array for almost

all the basic LIST operations.

iii Implementing QUEUES on a circular is more efficient than implementing QUEUES
iv Last-in-first-out QUEUES type of computations are efficiently supported by QUEUES.

Which of the following is correct?

(A) (ii) and (iii) are true (B) (i) and (ii) are true

(C) (iii) and (iv) are true (D) (ii) and (iv) are true

[A]

List perform almost all basic operation in O(1) accept merging

But array will take O(n) for all operations.

Here basic operation means insert delete at given position and

Queue using linked list are efficient in using memory. They do not waste space like in array implementation .

8. Compute the postfix equivalent of the following infix expression.

3 * log (x + 1) – a/2

3X1+log*a2/- (assuming log as a operator not as a function and precedence of log is greatest)

9. A queue Q containing n items and an empty stack S are given. It is required to transfer all the items from the queue to

the stack, so that the item at the front of the queue is on the top of the stack, and the order of all the other

items is preserved. Show this how this can be done in O(n) time using only a constant amount of additional

storage. Note that the only operations which can be performed on the queue and stack are Delete, Insert,

Push and Pop. Do not assume any implementation of the queue or stack.

It can be done as –

Step1. Delete all the nodes of queue and push all the elements in stack sequentially.

Step2. Now queue is empty then pop every element form stack and inset it into queue

Step3. Now again repeat the step 1.

10. Which of the following is essential for converting an infix expression to the postfix form efficiently?

(A) An operator stack (B) An operand stack

(C) An operand stack and an operator stack (D) A parse tree

[A] Operater stack will be used to store operaters as the appear based on three rules

1. if operater ‘x’ is on top and operater ‘y’comes which has a higher precedence than x the it will also be

pushed to stack..

2. if x and y have same precedence then x will be poped out before y is pushed

3. same as rule 2 if x has a higher precedence than y.

11. A priority queue Q is used to implement a stack S that stores characters. PUSH(C) is implemented as INSERT(Q,

C, K) where K is an appropriate integer key chosen by the implementation. POP is implemented as

DELETEMIN(Q). For a sequence of operations, the keys chosen are in

(A) non-increasing order (B) non-decreasing order

(C) strictly increasing order (D) strictly decreasing order

[D] Implementing stack using priority queue require first element inserted in stack will be deleted at last, and to

implement it using deletemin() operation of queue will require first element inserted must have highest

priority so the key must be in decreasing order.

12. Suppose a stack implementation supports, in addition to PUSH and POP, an operation REVERSE, which reverses

the order of the elements on the stack.

(a) To implement a queue using the above stack implementation, show how to implement ENQUEUE using a

single operation and DEQUEUE using a sequence of 3 operations (2)

(b) The following postfix expression, containing single digit operands and arithmetic operators + and *, is

evaluated using a stack.

5 2 * 3 4 + 5 2 * * +

a)

i) Implementation of enqueue is as-

Step1: push the element in stack

ii) implementation of dequeue is as-

Step1: reverse

Step2: pop

Step3:reverse

Show the contents of the stack

i After evaluating 5 2 * 3 4 +

ii After evaluating 5 2 * 3 4 + 5 2

iii At the end of evaluation

b)

Input in postfix Stack<- top evaluation

5 5

2 52

* 10 5*2=10

3 10 3

4 10 3 4

+ 10 7 3+4=7

5 10 7 5

2 10 7 5 2

* 10 7 10 5*2=10

* 10 70 7*10=70

i) contents of stack are 10 7

ii) contents of stack are10 7 5 2

iii) contents of stack null and the final answer is 80

13. What is the minimum number of stacks of size n required to implement a queue of size n?

A. One

B. Two

C. Three

D. Four

[B] First stack will be used to store the queue with rear at top..

We need to push element in to stack 1 in order to insert it in queue.

For deletion we will empty stack 1 in stack 2.that will put front on top so we can pop from stack 2 in order to effect

deletion.

14. Let S be a stack of size n ≥ 1. Starting with the empty stack, suppose we Push the first n natural numbers in

sequence, and then perform n Pop operations. Assume that Push and POP operations take X seconds each, and Y

seconds elapse between the end of one such stack operation and the start of the next operation. For m ≥ 1, define the

stack-life of m as the time elapsed from the end of Push(m) to the start of the Pop operation that removes m from S.

The average stack-life of an element of this stack is

(A) n(X + Y)

(B) 3Y + 2X

(C) N(X + Y) – X

(D) Y + 2X

[A]

Push1() and pop1() are push and pop operations in 1st stack

Push2() and pop2() are push and pop operations in 2nd stack

+ 80

Null

Using 1st stack we can insert value same as queue (push1())

And for deletion we have to pop all the elements of 1st stack into push it into 2nd stack and then pop one element form

2nd stack.(pop1()push2()…..until 1st stack is emptied then pop2()…for desired number of deletion)

15. The following sequence of operations is performed on a stack :

PUSH (10), PUSH (20), POP, PUSH (10), PUSH (20), POP, POP, POP, PUSH (20), POP.

The sequence of values popped out is:

F. 20, 10, 20, 10, 20

G. 20, 20, 10, 10, 20

H. 10, 20,20,10,20

I. 20,20,10,20,10

J. None of the above

[G]

String Status of stack Status of array(output)

Push(10) 10

Push(20) 10 20

Pop 10 20

Push(10) 10 10 20

Push(20) 10 10 20 20

Pop 10 10 20 20

Pop 10 20 20 10

Pop 20 20 10 10

Push(20) 20 20 20 10 10

Pop 20 20 10 10 20

16. Consider three pegs A, B, C and four disks of different sizes. Initially, the four disks are stacked on peg A, in order

of decreasing size. The task is to move all the disks from peg A to peg C with the help of peg B. the

moves are to be made under the following constraints:

[i] In each step, exactly one disk is moved from one peg to another.

[ii] A disk cannot be placed on another disk of smaller size. If we denote the movement of a disk from one

peg to another by y → y, where y, y are A, B or C, then represent the sequence of the minimum number

of moves to accomplish this as a binary tree with node labels of the form (y → y) such that the in-order

traversal of the tree gives the correct sequence of the moves..

If there are n disks, derive the formula for the total number of moves required in terms of n

For one disk the steps involved is A->C ie 1 step

For two disks the steps involved are A->B,A->C,B->C ie 3steps

For three disks the steps involved are A->C,A->B,C->B,A->C,B->A,B->C,A->C ie 7steps

For 4 disks the steps involved are A->B,A->C,B->C,A->B,C->A,C->B,A->B,A->C,B->C,B->A,C->A,B->A,A-

>B,A->C,B->C ie 15 steps

So for 1 disk 21-1=1

2 disks 22-1=3

3 disks 32-1=7

4 disks 42-1=15

……. ……….

……. ……….

n disks 2n-1 (by induction)

17. A stack is use to pass parameters to procedures in a procedure call.

(b) If a procedure P has two parameters as described in procedure definition:

procedure P(var x: integer; y: integer);

and if P is called by:

P(a,b)

State precisely in a sentence what is pushed onto stack for parameters a and b.

In the generated code for the body of procedure P, how will the addressing of formal parameters y and y differ?

[QUESTION IS HIGHLY AMBIGUOUS]

18. Which of the following permutation can be obtained in the output (in the same order) using a stack assuming that

the input is the sequence1, 2, 3, 4, 5 in that order?

(E) 3, 4, 5, 1, 2

(F) 3, 4, 5, 2, 1

(G) 1, 5, 2, 3, 4
(H) 5, 4, 3, 1, 2

[F] As it can be verified as- push(1) push(2) push(3) pop push(4) pop push(5) pop pop pop

19. Consider the following C program:

#include<stdio.h>

#define EOF -1

void push(int); /* Push the argument on the stack */

int pop(void); /* pop the top of the stack */

void flagError();

int main()

{ int c, m, n, r;

while ((c = getchar()) != EOF)

{ if (isdigit(c))

push (c)

else if (c = = ‘+’) || (c = = ‘*’))

{ m = pop();

n = pop();

are = (c = = ‘+’) ? n + m : n*m;

push(r);

}

else if (c != ‘ ‘)

flagError();

}

printf(“%c”, pop());

}

What is the output of the program for the following input?

5 2 * 3 3 2 + * +

(A) 15 (B) 25 (C) 30 (D) 150

[B] Sequence of operations will be

1. push(5)

2. push(2)

3. m = 2;n=5 ;r=5*2

4. push(r) /*push(10)*/

5. push(3)

6. push(3)

7. push(2)

8. m=2; n= 3;r=3+2

9. push(r) /* push(5)*/

10. r=5*3
11. push(r) /*push(15)*/

12. m=15;n = 10;r=15+10

13. push(r)

14. printf(“%d”,pop());

Which will print 25

20. Suppose you are given an implementation of a queue of integers. The operations that can be performed on the

queue are:

isEmpty(Q) – returns true if the queue is empty, false otherwise.

delete(Q) – deletes the element at the front of the queue and returns its value.

insert(Q, i) – inserts the integer i at the rear of the queue.

Consider the following function:

void f(queue Q)

{

int i;

if(!isEmpty (Q)) {

i = delete(Q);

f(Q)

insert(Q, i);

}

}

What operation is performed by the above function f?

(A) Leaves the queue Q unchanged

(B) Reverse the order of elements in the queue Q
(C) Deletes the element at the front of the queue Q and inserts it at the rear keeping the other elements in

the same order

(D) Empties the queue Q.

[B] Due to recursion the last element deleted will be the first to be inserted so element that was at rear will be at

front in new queue and the second last element will be at second position hence the queue will be reversed.

21. Let w be the minimum weight among all edge weights in an undirected connected graph. Let e be a specific edge of

weight w. Which of the following is FALSE?

(A) There is a minimum spanning tree containing e.

(B) If e is not in a minimum spanning tree T, then in the cycle formed by adding e to T, all edges have the

same weight.

(C) Every minimum spanning tree has an edge of weight w.

(D) e is present in every minimum spanning tree.

[D]

22. Consider the following C function:

int f(int n)

{

static int are = 0;

If (n < = 0) return 1;

If (n > 3)

{ r = n;

return f (n – 2) + 2;

}

return f(n – 1) + r;

}

What is the value of f(5)?

(A) 3 (B) 7 (C) 9 (D) 18

[D]

f(5) will return f(3)+2

f(3) will return f(2)+5

f(2) will return f(1)+5

f(1) will return f(0)+5

f(0) will return 1

f(1) will return 6

f(2) will return 11

f(3) will return 16

f(5) will return 18

23. The following postfix expression with single digit operands is evaluated using a stack:

8 2 3 ^ / 2 3 * + 5 1 * -

Note that ^ is the exponentiation operator. The top two elements of the stack after the first *is evaluated are:

(A) 6, 1 (B) 5, 7 (C) 3, 2 (D) 1, 5

[A]

Symbols read so far Operand stack

8 8

8 2 8 2

8 2 3 8 2 3

8 2 3^ 8 8

8 2 3^/ 1

8 2 3^/2 1 2

8 2 3^/2 3 1 2 3

8 2 3^/2 3 * 1 6

24. An implementation of queue Q, using stacks S1 and S2 is given below:

void insert (Q, x) {

push (S1, x);

}

void delete (Q) {

if (stack-empty (S2)) then

if (stack-empty (S1)) then {

print (“ Q is empty”);

return;

}

else while (! (stack-empty (S1))) then {

x = pop (S1);

push (S2, x);

}

x = pop (S2);

}

Let n insert and m (≤ n) delete operations be performed in an arbitrary order on an empty queue Q. let x and y be the

number of push and pop operations performed respectively in the process. Which one of the following is true for all

m and n?

(A) n + m ≤ x < 2n and 2m ≤ y ≤ n + m (B) n + m ≤ x< 2n and 2m ≤ y ≤ 2n

(C) 2m ≤ x < 2n and 2m ≤ y ≤ n + m (D) 2m ≤ x< 2n and 2m ≤ y ≤ 2n

[A]

Extreme case will be when all the elements are inserted and then deleted

For each insert we have a push operation

And for first delete we have n push operations if n elements are in stack, so n+m<=x in worst case

And no of pushes is also 2n : n for n insert and n for first delete

So (n+m)<= x < 2n

Also n pops for first delete and m-1 one pops for m-1 deletes so y= n+m-1 in extreme case y< n+m-1

25. A function f defined on stacks of integers satisfies the following properties.

f(ф) = 0 and

f(push(S, i) = max(f(S), 0) + i for all stacks S and integers i.

If a stack S contains the integers 2, -3, 2, -1, 2 in order from bottom to top, what is f(S)?

(A) 6 (B) 4 (C) 3 (D) 2

[C] Answer is 3

Step1:top s=2

Step2: tops= -1

Step3: tops= 2

Step4: top s=1

Step5: top s=3

26. Assume that the operators +, -, × are left associative and ^ is right associative. The order of precedence (from

highest to lowest) is ^, ×, +, -. The postfix expression corresponding to the infix expression a+b×c-d^e^f is

(A) abc×+def ^ ^ -

(B) abc×+de ^ f ^ -

(C) ab+c×d-e ^f ^

(D) -+a×bc ^ ^ def

[A]

Infix string Stack Postfix array

a a

+ + a

b + ab

* +* ab

27. The best data structure to check whether an arithmetic expression has balanced parenthesis is a

(A) Queue

(B) Stack

(C) Tree

(D) List

[B] We can put every opening parenthesis in stack and pop every time we get a closed one. In

the ened if we get stack empty then we had balanced parenthesis else not.

c +* abc

- - abc*+

d - abc*+d

^ -^ abc*+d

e -^ abc*+de

^ -^^ (not poped because of right

associative)

abc*+de

f -^^ abc*+def

 -^ abc*+def^

 - abc*+def^^

 abc*+def^^-

Binary Tree using Array Representation

Each node contains info, left, right and father fields. The left, right and father
fields of a node point to the node’s left son, right son and father respectively.

Using the array implementation, we may declare,
#define NUMNODES 100
struct nodetype

{
int info;
int left;
int right;
int father;
};

struct nodetype node[NUMNODES];

This representation is called linked array representation.

Example: -

Fig (a) Fig (b)

The above trees can be represented in memory sequentially as follows

The above representation appears to be good for complete binary trees

and wasteful for many other binary trees. In addition, the insertion or

deletion of nodes from the middle of a tree requires the insertion of many

nodes to reflect the change in level number of these nodes.

A
B
-
C
-
-
-
D
-

E

www.padeepz.net

Figure 2.5 Figure 2.6

0 1
A A

B 1 C 2 B 2 C 3

D E F G

3 4 5 6
D E F G

4 5 6 7

0 1 2 3 4 5 6

For Figure 2.5

Root = i

leftchild=2i+1

1 2 3 4 5 6 7

For Figure 2.6

Root = i

leftchild=2i

www.padeepz.net

A B C D E F G

A B C D E F G

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

rightchild=2i+2 rightchild=2i+1

leftchild’s parent position = i/2 parent position= i/2

2n+1 – 1 => array size 2n+1 - 1 => size of array

n => no of levels of a tree n => number of levels of a tree

rightchild’s position= i-1/2

Binary Tree using Link Representation

The problems of sequential representation can be easily overcome through
the use of a linked representation.
Each node will have three fields LCHILD, DATA and RCHILD as represented
below

LCHILD DATA RCHILD

T

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

1000

1004 2 1002

1000 1006 1

Fig (a) Fig (b)

In most applications it is adequate. But this structure make it difficult to
determine the parent of a node since this leads only to the forward movement
of the links.

Using the linked implementation we may declare,

Struct treenode

{

int data;

structtreenode *leftchild;

structtreenode *rightchild;

}*T;

T
2000

1006

1002 1004 1008 1010

TYPES OF BINARY TREES

Left Skewed Binary tree :

A binary tree which has only left child is called left skewed binary tree.

NULL 7 NULL NULL 6 NULL NULL 4 NULL NULL 3 NULL

1010 5 1008

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

A

B

C

Right Skewed Binary tree :

A Binary tree which has only right child is called right skewed binary tree.

Full Binary Tree :

It is the one which has exactly two children for each node at each level and

all the leaf nodes should be at the same level.

Complete Binary Tree :

It is the one tree where all the leaf nodes need not be at the same

level and at the bottom level of the complete binary tree, the nodes should be

filled from the left to the right.

All full binary trees are complete binary tree. But all complete binary trees

need not be full binary tree.
A

B C

A

B

C

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

A

B E F

C D G H I

CONVERSION OF A GENERAL TREE TO BINARY TREE

General Tree:

A General Tree is a tree in which each node can have an unlimited out degree.
Each node may have as many children as is necessary to satisfy its
requirements. Example: Directory Structure

A

B F G

C H I J

It is considered easy to represent binary trees in programs than it is to
represent general trees. So, the general trees can be represented in binary
tree format.

Changing general tree to Binary tree:

The binary tree format can be adopted by changing the meaning of the left and
right pointers. There are two relationships in binary tree,
Parent to child
Sibling to sibling
Using these relationships, the general tree can be implemented as binary tree.

Algorithm
Identify the branch from the parent to its first or leftmost child. These
branches from each parent become left pointers in the binary tree
Connect siblings, starting with the leftmost child, using a branch for each
sibling to its right sibling.
Remove all unconnected branches from the parent to its children

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

A

A
B E F

C B D G H I

C E

D F

G THE
H

I

B

C D

(a) General Tree

A A

E

F

B

E

F

G

H

I

C

D

G

H

I

Step 1: Identify all leftmost children Step 2: Connect Siblings

Step 3: Delete unneeded branches

RESULTING BINARY TREE

BINARY TREE TRAVERSALS

Compared to linear data structures like linked lists and one dimensional array,

which have only one logical means of traversal, tree structures can be

traversed in many different ways. Starting at the root of a binary tree, there

are three main steps that can be performed and the order in which they are

performed defines the traversal type. These steps (in no particular order) are:

performing an action on the current node (referred to as "visiting" the node),

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

traversing to the left child node, and traversing to the right child node. Thus

the process is most easily described through recursion.

A binary tree traversal requires that each node of the tree be processed once
and only once in a predetermined sequence.
The two general approaches to the traversal sequence are,

Depth first traversal
Breadth first traversal

Breadth-First Traversal

In a breadth-first traversal, the processing proceeds horizontally form the
root to all its children, then to its children’s children, and so forth until all
nodes have been processed. In other words, in breadth traversal, each level is
completely processed before the next level is started.

Depth-First Traversal

In depth first traversal, the processing proceeds along a path from the root
through one child to the most distant descendent of that first child before

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

A

B C

processing a second child. In other words, in the depth first traversal, all the
descendants of a child are processed before going to the next child.

There are basically three ways of binary tree traversals.
1. Inorder --- (left child,root,right child)

2. Preorder --- (root,left child,right child)

3. Postorder --- (left child,right child,root)

Inorder--- B A C

Preorder --- A B C

Postorder --- B C A

In C, each node is defined as a structure of the following form:

struct node
{
int info;
struct node *lchild;
struct node *rchild;
}

typedef struct node NODE;

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

A

B E

C D F

Inorder Traversal

Steps :
Traverse left subtree in inorder
Process root node
Traverse right subtree in inorder

The Output is : C  B  D A E  F

Algorithm
Algorithm inoder traversal (BinTree T)
Begin
If (not empty (T)) then
Begin
Inorder_traversal (left subtree (T))
Print (info (T)) / * process node */
Inorder_traversal (right subtree (T))
End
End

Routines
void inorder_traversal (NODE * T)
{
if(T ! = NULL)
{

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

inorder_traversal(T->lchild);
printf(“%d \t “, T->info);
inorder_traversal(T->rchild);
}
}

Preorder Traversal

Steps :
Process root node
Traverse left subtree in preorder
Traverse right subtree in preorder

Algorithm
Algorithm inoder traversal (BinTree T)
Begin
If (not empty (T)) then
Begin
Print (info (T)) / * process node */
Preorder_traversal (left subtree (T))
Preorder_traversal (right subtree (T))
End
End

Routines
void inorder_traversal (NODE * T)
{
if(T ! = NULL)
{
printf(“%d \t “, T->info);
preorder_traversal(T->lchild);
preorder_traversal(T->rchild);
}
}

A

B

www.padeepz.net
E

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Output is : A B  C  D  E  F

Postorder Traversal

Steps :
Traverse left subtree in postorder
Traverse right subtree in postorder
process root node

Algorithm
Algorithm postorder traversal (BinTree T)
Begin
If (not empty (T)) then
Begin
Postorder_traversal (left subtree (T))
Postorder_traversal (right subtree(T))
Print (Info (T)) / * process node */
End
End

Routines
void postorder_traversal (NODE * T)
{

if(T ! = NULL)
{
postorder_traversal(T->lchild);
postorder_traversal(T->rchild);
printf(“%d \t”, T->info);

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

A

B
C

D

A

B E

C D F

A

B
C

D E F G

}
}

Output is : C  D  B  F  E  A

Examples :

1. FIND THE TRAVERSAL OF THE FOLLOWING TREE

ANSWER : POSTORDER: DBCA INORDER: DBAC PREORDER:ABCD

2. FIND THE TRAVERSAL OF THE FOLLOWING TREE

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

A

C B

F E D

H
G

ANSWER : POSTORDER: DEBFGCA INORDER: DBEAFCG

PREORDER:ABDECFG

3.A BINARY TREE HAS 8 NODES. THE INORDER AND POSTORDER TRAVERSAL OF THE

TREE ARE GIVEN BELOW. DRAW THE TREE AND FIND PREORDER.

POSTORDER: F E C H G D B A

INORDER: F C E A B H D G

Answer:

PREORDER: ACFEBDHG

Example 4

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Preorder traversal sequence: F, B, A, D, C, E, G, I, H (root, left, right)
Inorder traversal sequence: A, B, C, D, E, F, G, H, I (left, root, right)
Postorder traversal sequence: A, C, E, D, B, H, I, G, F (left, right, root)

APPLICATIONS

1. Some applications of preorder traversal are the evaluation of expressions in
prefix notation and the processing of abstract syntax trees by compilers.
2. Binary search trees (a special type of BT) use inorder traversal to print all of
their data in alphanumeric order.
3.A popular application for the use of postorder traversal is the evaluating of
expressions in postfix notation.

EXPRESSION TREES

Algebraic expressions such as

a/b+(c-d)e

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Tree representing the expression a/b+(c-d)e.

Converting Expression from Infix to Postfix using STACK

To convert an expression from infix to postfix, we are going to use a stack.

Algorithm
1) Examine the next element in the input.
2) If it is an operand, output it.
3) If it is opening parenthesis, push it on stack.
4) If it is an operator, then
i) If stack is empty, push operator on stack.
ii) If the top of the stack is opening parenthesis, push operator on stack.
iii) If it has higher priority than the top of stack, push operator on stack.
iv) Else pop the operator from the stack and output it, repeat step 4.
5) If it is a closing parenthesis, pop operators from the stack and output them
until an opening parenthesis is encountered. pop and discard the opening
parenthesis.
6) If there is more input go to step 1
7) If there is no more input, unstack the remaining operators to output.

Example
Suppose we want to convert 2*3/(2-1)+5*(4-1) into Prefix form: Reversed
Expression:)1-4(*5+)1-2(/3*2

Char Scanned Stack Contents(Top on right) Postfix Expression

2 Empty 2

* * 2

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

3 * 23

/ / 23*

(/(23*

2 /(23*2

- /(- 23*2

1 /(- 23*21

) / 23*21-

+ + 23*21-/

5 + 23*21-/5

* +* 23*21-/5

(+*(23*21-/5

4 +*(23*21-/54

- +*(- 23*21-/54

1 +*(- 23*21-/541

) +* 23*21-/541-

 Empty 23*21-/541-*+

So, the Postfix Expression is 23*21-/541-*+

Converting Expression from Infix to Prefix using STACK

It is a bit trickier algorithm, in this algorithm we first reverse the input
expression so that a+b*c will become c*b+a and then we do the conversion
and then again the output string is reversed. Doing this has an advantage that
except for some minor modifications the algorithm for Infix->Prefix remains
almost same as the one for Infix->Postfix.

Algorithm
1) Reverse the input string.
2) Examine the next element in the input.
3) If it is operand, add it to output string.
4) If it is Closing parenthesis, push it on stack.
5) If it is an operator, then

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

i) If stack is empty, push operator on stack.
ii) If the top of stack is closing parenthesis, push operator on stack.
iii) If it has same or higher priority than the top of stack, push operator on
stack.
iv) Else pop the operator from the stack and add it to output string, repeat
step 5.
6) If it is a opening parenthesis, pop operators from stack and add them to
output string until a closing parenthesis is encountered. Pop and discard the
closing parenthesis.
7) If there is more input go to step 2
8) If there is no more input, unstack the remaining operators and add them to
output string.
9) Reverse the output string.

Example

Suppose we want to convert 2*3/(2-1)+5*(4-1) into Prefix form: Reversed
Expression:)1-4(*5+)1-2(/3*2

Char
Scanned

Stack Contents(Top on
right)

Prefix Expression(right to
left)

))

1) 1

-)- 1

4)- 14

(Empty 14-

* * 14-

5 * 14-5

+ + 14-5*

) +) 14-5*

1 +) 14-5*1

- +)- 14-5*1

2 +)- 14-5*12

(+ 14-5*12-

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

/ +/ 14-5*12-

3 +/ 14-5*12-3

* +/* 14-5*12-3

2 +/* 14-5*12-32

 Empty 14-5*12-32*/+

Reverse the output string : +/*23-21*5-41 So, the final Prefix Expression is
+/*23-21*5-41

EVALUATION OF EXPRESSIONS

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

CONSTRUCTING AN EXPRESSION TREE

Let us consider the postfix expression given as the input, for constructing an

expression tree by performing the following steps :

1. Read one symbol at a time from the postfix expression.

2. Check whether the symbol is an operand or operator.

i. If the symbol is an operand, create a one node tree and push a

pointer on to the stack.

ii. If the symbol is an operator, pop two pointers from the stack

namely, T1 and T2 and form a new tree with root as the operator,

and T2 as the left child and T1 as the right child.

iii. A pointer to this new tree is then pushed on to the stack.

We now give an algorithm to convert a postfix expression into an expression
tree. Since we already have an algorithm to convert infix to postfix, we can
generate expression trees from the two common types of input. The method
we describe strongly resembles the postfix evaluation algorithm of Section
3.2.3. We read our expression one symbol at a time. If the symbol is an
operand, we create a one-node tree and push a pointer to it onto a stack. If the
symbol is an operator, we pop pointers to two trees T1 and T2 from the stack
(T1 is popped first) and form a new tree whose root is the operator and whose
left and right children point to T2 and T1 respectively. A pointer to this new
tree is then pushed onto the stack.

As an example, suppose the input is

a b + c d e + * *

The first two symbols are operands, so we create one-node trees and push
pointers to them onto a stack.*

*For convenience, we will have the stack grow from left to right in the
diagrams.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Next, a '+' is read, so two pointers to trees are popped, a new tree is formed,
and a pointer to it is pushed onto the stack.*

Next, c, d, and e are read, and for each a one-node tree is created and a pointer
to the corresponding tree is pushed onto the stack.

Now a '+' is read, so two trees are merged.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Continuing, a '*' is read, so we pop two tree pointers and form a new tree with
a '*' as root.

Finally, the last symbol is read, two trees are merged, and a pointer to the final
tree is left on the stack.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Binary search tree (BST) is a node-based binary tree data structure which
has the following properties:

The left sub-tree of a node contains only nodes with keys less than the
node's key.
The right sub-tree of a node contains only nodes with keys greater than
the node's key.
Both the left and right sub-trees must also be binary search trees.

BINARY SEARCH TREE

 From the above properties it naturally follows that:

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Program: Creating a Binary Search Tree

We assume that every node of a binary search tree is capable of holding an
integer data item and that the links can be made to point to the root of the left
subtree and the right subtree, respectively. Therefore, the structure of the
node can be defined using the following declaration:

struct tnode
{
int data;
struct tnode *lchild,*rchild;
};

A complete C program to create a binary search tree follows:
#include <stdio.h>
#include <stdlib.h>
struct tnode
{
int data;
struct tnode *lchild, *rchild;
};

struct tnode *insert(struct tnode *p,int val)
{
struct tnode *temp1,*temp2;
if(p == NULL)
{

Each node (item in the tree) has a distinct key.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

p = (struct tnode *) malloc(sizeof(struct tnode)); /* insert the new node as
root node*/
if(p == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
p->data = val;
p- >lchild=p->rchild=NULL;
}
else
{
temp1 = p;
/* traverse the tree to get a pointer to that node whose child will be the newly
created node*/
while(temp1 != NULL)
{
temp2 = temp1;
if(temp1 ->data > val)
temp1 = temp1->lchild;
else
temp1 = temp1->rchild;
}
if(temp2->data > val)
{
temp2->lchild = (struct tnode*)malloc(sizeof(struct tnode));/*inserts the
newly created node as left child*/
temp2 = temp2->lchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
temp2->data = val;
temp2->lchild=temp2->rchild = NULL;
}
else
{

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

temp2->rchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts the
newly created node
as left child*/
temp2 = temp2->rchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
temp2->data = val;
temp2->lchild=temp2->rchild = NULL;
}
}
return(p);
}
/* a function to binary tree in inorder */
void inorder(struct tnode *p)
{
if(p != NULL)
{
inorder(p->lchild);
printf("%d\t",p->data);
inorder(p->rchild);
}
}
void main()
{
struct tnode *root = NULL;
int n,x;
printf("Enter the number of nodes\n");
scanf("%d",&n);
while(n - > 0)
{
printf("Enter the data value\n");
scanf("%d",&x);
root = insert(root,x);
}
inorder(root);

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

2

4

2

4

5

and 1<2 so
7

2

4

}

EXAMPLE Construct a BST with nodes 2,4,5,7,1

Normal Tree 2

4 5

7 1

Binary Search Tree

The Values in the left subtree must be smaller than the keyvalue to be

inserted.

The Values in the right subtree must be larger than the keyvalue to be

inserted.

Take the 1st element 2 and compare with 4. 2<4

So

Similarly 2<5,5>4 and 7>2,7>4,7>5

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

1
5

7
is the final BST.

OPERATIONS

Operations on a binary tree require comparisons between nodes. These
comparisons are made with calls to a comparator, which is a subroutine
that computes the total order (linear order) on any two values. This
comparator can be explicitly or implicitly defined, depending on the
language in which the BST is implemented.
The following are the operations that are being done in Binary Tree
 Searching.
 Sorting.
 Deletion.
 Insertion.

Binary search tree declaration routine

Struct treenode;

Typedef struct treenode *position;

Typedef struct treenode *searchtree;

Typedef int elementtype;

Structtreenode

{

Elementtype element;

Searchtree left;

Searchtree right;

};

Struct treenode

{

int element;

struct treenode *left;

struct treenode *right;

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

};

Make_null

This operation is mainly for initialization. Some programmers prefer to
initialize the first element as a one-node tree, but our implementation follows
the recursive definition of trees more closely. It is also a simple routine.

Routine to make an empty tree

SEARCH_TREE
make_null (void)
{
return NULL;
}

Find

This operation generally requires returning a pointer to the node in tree T
that has key x, or NULL if there is no such node. The structure of the tree
makes this simple. If T is , then we can just return . Otherwise, if the key stored
at T is x, we can return T. Otherwise, we make a recursive call on a subtree of
T, either left or right, depending on the relationship of x to the key stored in T.
The code in Figure 4.18 is an implementation of this strategy.

Find operation for binary search trees

Position find(structtreenode T, intnum)

{

While(T!=NULL)

{

if(num>T-->data)

{

T=T-->right;

if(num<T-->data)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

T=T-->left;

}

else if(num< T-->data)

{

T=T-->left;

if(num>T-->data)

T=T-->right;

}

if(T-->data==num)

break;

}

return T;

}

// To find a Number

Position find(elementtype X, searchtree T)

{

If(T==NULL)

return NULL;

if(x< T-->element)

return find(x,T-->left);

else if(X> T-->element)

return find(X,T-->right);

else

return T;

}

 Find_min and Find_max

Recursive implementation of find_min & find_max for binary search

trees

// Finding Minimum

Position findmin(searchtree T)

{

if(T==NULL)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

return NULL;

else if(T-->left==NULL)

return T;

else return findmin(T-->left);

}

// Finding Maximum

Position findmax(searchtree T)

{

if(T==NULL)

return NULL;

else if(T-->right==NULL)

return T;

else return findmin(T-->right);

}

Nonrecursive implementation of find_min & find_max for binary search

trees

// Finding Maximum

Position findmax(searchtree T)

{

if(T!=NULL)

while(T-->Right!=NULL)

T=T-->right;

Return T;

}

// Finding Minimum

Position findmin(searchtree T)

{

if(T!=NULL)

while(T-->left!=NULL)

T=T-->left;

Return T;

}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Insert

The insertion routine is conceptually simple. To insert x into tree T, proceed
down the tree as you would with a find. If x is found, do nothing (or "update"
something). Otherwise, insert x at the last spot on the path traversed. Figure
below shows what happens. To insert 5, we traverse the tree as though a find
were occurring. At the node with key 4, we need to go right, but there is no
subtree, so 5 is not in the tree, and this is the correct spot.

Duplicates can be handled by keeping an extra field in the node record
indicating the frequency of occurrence. This adds some extra space to the
entire tree, but is better than putting duplicates in the tree (which tends to
make the tree very deep). Of course this strategy does not work if the key is
only part of a larger record. If that is the case, then we can keep all of the
records that have the same key in an auxiliary data structure, such as a list or
another search tree.

Figure shows the code for the insertion routine. Since T points to the root of
the tree, and the root changes on the first insertion, insert is written as a
function that returns a pointer to the root of the new tree. Lines 8 and 10
recursively insert and attach x into the appropriate subtree.

Insertion into a binary search tree

Searchtree insert(elementtype X, Searchtree T)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

{

If(T== NULL)

{

/* create and return a one node tree*/

T=malloc(sizeof(structtreenode));

If(T==NULL)

Fatalerror(“Out of Space”);

Else

{

T-->element=X;

T-->left=T-->right=NULL;

}

}

Else if(x<T-->element)

T-->left=insert(X,T-->left);

Else if(X>=T-->left)

T-->right=insert(X,T-->right);

Return T;

}

EXAMPLE Insert node 5 in given tree

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

STEP 1: Now 5<6 and 5>2 and 5<4 so

 Thus 5 is inserted.

Delete

As is common with many data structures, the hardest operation is deletion.
Once we have found the node to be deleted, we need to consider several
possibilities.

If the node is a leaf, it can be deleted immediately. If the node has one child,
the node can be deleted after its parent adjusts a pointer to bypass the node
(we will draw the pointer directions explicitly for clarity).. Notice that the
deleted node is now unreferenced and can be disposed of only if a pointer to it
has been saved. The complicated case deals with a node with two children.
The general strategy is to replace the key of this node with the smallest key of
the right subtree (which is easily found) and recursively delete that node
(which is now empty). Because the smallest node in the right subtree cannot
have a left child, the second delete is an easy one.

To delete an element, consider the following three possibilities :

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

6

2 8

1 4

3

6

2 8

1 4

Case 1: Node to be deleted is a leaf node.

Case 2: Node with only one child.

Case 3: Node with two children.

Case 1: Node with no children | Leaf node :

1. Search the parent of the leaf node and make the link to the leaf node as

NULL.

2. Release the memory of the deleted node.

Case 2: Node with only one child :

1. Search the parent of the node to be deleted.

2. Assign the link of the parent node to the child of the node to be deleted.

3. Release the memory for the deleted node.

Case 3: Node with two children :

It is difficult to delete a node which has two children.

So, a general strategy has to be followed.

1. Replace the data of the node to be deleted with either the largest element

from the left subtree or the smallest element from the right subtree.

Case 1:

Before Deletion After Deletion of 3

EXAMPLE :

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

6

2 8

1 4

3

6

2 8

1

3

Case 2 :

Before deletion of 4 After deletion of 4

EXAMPLE The right subtree of the node x to be deleted is empty.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

6

2 8

1 4

3 5

6

3 8

1 4

5

EXAMPLE The left subtree of the node x to be deleted is empty.

Case 3 :

Before deletion of 2 After deletion

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

EXAMPLE

DELETION BY COPYING: METHOD#1

Copy the minimum key in the right subtree of x to the node x, then

delete the one-child or leaf-node with this minimum key.

DELETION BY COPYING: METHOD#2

Copy the maximum key in the left subtree of x to the node x, then delete

the one-child or leaf-node with this maximum key.

The code in performs deletion. It is inefficient, because it makes two passes
down the tree to find and delete the smallest node in the right subtree when

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

this is appropriate. It is easy to remove this inefficiency, by writing a special
delete_min function, and we have left it in only for simplicity.

If the number of deletions is expected to be small, then a popular strategy to
use is lazy deletion: When an element is to be deleted, it is left in the tree and
merely marked as being deleted. This is especially popular if duplicate keys
are present, because then the field that keeps count of the frequency of
appearance can be decremented. If the number of real nodes in the tree is the
same as the number of "deleted" nodes, then the depth of the tree is only
expected to go up by a small constant (why?), so there is a very small time
penalty associated with lazy deletion. Also, if a deleted key is reinserted, the
overhead of allocating a new cell is avoided.

Deletion routine for binary search trees

Searchtree delete(elementtype X, searchtree T)

{

positiontmpcell;

if(T==NULL)

error(“element not found”);

else if(X<T-->element)

T-->left=delete(X,T-->left);

Else if(X>T-->element)

T-->right=delete(X,T-->right);

Else if(T-->left != NULL && T-->right!=NULL)

{

/* Replace with smallest in right subtree*/

Tmpcell=findmin(T-->right);

T-->element=tmpcell-->element;

T-->right=delete(T-->element,T-->right);

}

Else

{

/* One or Zero children*/

tmpcell=T;

if(T-->left==NULL)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

T=T-->right;

Else if(T-->right==NULL)

T=T-->left;

Free(tmpcell);

}

Return T;

}

COUNTING THE NUMBER OF NODES IN A BINARY SEARCH TREE

Introduction

To count the number of nodes in a given binary tree, the tree is required to be
traversed recursively until a leaf node is encountered. When a leaf node is
encountered, a count of 1 is returned to its previous activation (which is an
activation for its parent), which takes the count returned from both the
children's activation, adds 1 to it, and returns this value to the activation of its
parent. This way, when the activation for the root of the tree returns, it
returns the count of the total number of the nodes in the tree.

Program

A complete C program to count the number of nodes is as follows:

#include <stdio.h>
#include <stdlib.h>
struct tnode
{
int data;
struct tnode *lchild, *rchild;
};
int count(struct tnode *p)
{
if(p == NULL)
return(0);
else

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

if(p->lchild == NULL && p->rchild == NULL)
return(1);
else
return(1 + (count(p->lchild) + count(p->rchild)));

}

struct tnode *insert(struct tnode *p,int val)
{
struct tnode *temp1,*temp2;
if(p == NULL)
{
p = (struct tnode *) malloc(sizeof(struct tnode)); /* insert the new node as root
node*/
if(p == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
p->data = val;
p->lchild=p->rchild=NULL;
}
else
{
temp1 = p;
/* traverse the tree to get a pointer to that node whose child will be the newly
created node*/
while(temp1 != NULL)
{
temp2 = temp1;
if(temp1 ->data > val)
temp1 = temp1->lchild;
else
temp1 = temp1->rchild;
}
if(temp2->data > val)
{
temp2->lchild = (struct tnode*)malloc(sizeof(struct tnode)); /

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

*inserts the newly created node
as left child*/
temp2 = temp2->lchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
temp2->data = val;
temp2->lchild=temp2->rchild = NULL;
}
else
{
temp2->rchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts the
newly created node
as left child*/
temp2 = temp2->rchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
temp2->data = val;
temp2->lchild=temp2->rchild = NULL;
}
}
return(p);
}
/* a function to binary tree in inorder */
void inorder(struct tnode *p)
{
if(p != NULL)
{
inorder(p->lchild);
printf("%d\t",p->data);
inorder(p->rchild);
}
}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

void main()
{
struct tnode *root = NULL;
int n,x;
printf("Enter the number of nodes\n");
scanf("%d",&n);
while(n --- > 0)
{
printf("Enter the data value\n");
scanf("%d",&x);
root = insert(root,x);
}
inorder(root);
printf("\nThe number of nodes in tree are :%d\n",count(root));
}

Explanation

Input:
o 1.The number of nodes that the tree to be created should have

2. The data values of each node in the tree to be created
Output:

o The data value of the nodes of the tree in inorder
2. The count of number of node in a tree.

Example

Input:
o 1.The number of nodes the created tree should have = 5

2. The data values of nodes in the tree to be created are: 10, 20, 5,
9, 8

Output: 1. 5 8 9 10 20
2. The number of nodes in the tree is 5

SWAPPING OF LEFT & RIGHT SUBTREES OF A GIVEN BINARY TREE

Introduction

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

An elegant method of swapping the left and right subtrees of a given binary
tree makes use of a recursive algorithm, which recursively swaps the left and
right subtrees, starting from the root.

Program

#include <stdio.h>
#include <stdlib.h>
struct tnode
{
int data;
struct tnode *lchild, *rchild;
};

struct tnode *insert(struct tnode *p,int val)
{
struct tnode *temp1,*temp2;
if(p == NULL)
{
p = (struct tnode *) malloc(sizeof(struct tnode)); /* insert the new node as
root node*/
if(p == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
p->data = val;
p- >lchild=p->rchild=NULL;
}
else
{
temp1 = p;
/* traverse the tree to get a pointer to that node whose child will be the newly
created node*/
while(temp1 != NULL)
{
temp2 = temp1;
if(temp1 ->data > val)
temp1 = temp1->lchild;

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

else
temp1 = temp1->rchild;
}
if(temp2->data > val)
{
temp2->lchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts the
newly created node
as left child*/
temp2 = temp2->lchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
temp2->data = val;
temp2->lchild=temp2->rchild = NULL;
}
else
{
temp2->rchild = (struct tnode*)malloc(sizeof(struct tnode));/ *inserts the
newly created node
as left child*/
temp2 = temp2->rchild;
if(temp2 == NULL)
{
printf("Cannot allocate\n");
exit(0);
}
temp2->data = val;
temp2->lchild=temp2->rchild = NULL;
}
}
return(p);
}
/* a function to binary tree in inorder */
void inorder(struct tnode *p)
{
if(p != NULL)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

{
inorder(p->lchild);
printf("%d\t",p->data);
inorder(p->rchild);
}
}
struct tnode *swaptree(struct tnode *p)
{
struct tnode *temp1=NULL, *temp2=NULL;
if(p != NULL)
{ temp1= swaptree(p->lchild);
temp2 = swaptree(p->rchild);
p->rchild = temp1;
p->lchild = temp2;
}
return(p);
}
void main()
{
struct tnode *root = NULL;
int n,x;
printf("Enter the number of nodes\n");
scanf("%d",&n);
while(n - > 0)
{
printf("Enter the data value\n");
scanf("%d",&x);
root = insert(root,x);
}
printf("The created tree is :\n");
inorder(root);
printf("The tree after swapping is :\n");
root = swaptree(root);
inorder(root);
printf("\nThe original tree is \n");
root = swaptree(root);
inorder(root);
}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Explanation

Input:
o 1.The number of nodes that the tree to be created should have

2. The data values of each node in the tree to be created
Output:

o 1.The data value of the nodes of the tree in inorder before
interchanging the left and right subtrees
2. The data value of the nodes of the tree in inorder after
interchanging the left and right subtrees

Example

Input:
o 1.The number of nodes that the created tree should have = 5

2. The data values of the nodes in tree to be created are: 10, 20, 5,
9, 8

Output:
o 1. 5 8 9 10 20

2. 20 10 9 8 5

Applications of Binary Search Trees

One of the applications of a binary search tree is the implementation of a
dynamic dictionary. This application is appropriate because a dictionary is an
ordered list that is required to be searched frequently, and is also required to
be updated (insertion and deletion mode) frequently. So it can be
implemented by making the entries in a dictionary into the nodes of a binary
search tree. A more efficient implementation of a dynamic dictionary involves
considering a key to be a sequence of characters, and instead of searching by
comparison of entire keys, we use these characters to determine a multi-way
branch at each step. This will allow us to make a 26-way branch according to
the first letter, followed by another branch according to the second letter and
so on.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Applications of Trees

1. Compiler Design.

2. Unix / Linux.

3. Database Management.

4. Trees are very important data structures in computing.

5. They are suitable for:

a. Hierarchical structure representation, e.g.,

i. File directory.

ii. Organizational structure of an institution.

iii. Class inheritance tree.

b. Problem representation, e.g.,

i. Expression tree.

ii. Decision tree.

c. Efficient algorithmic solutions, e.g.,

i. Search trees.

ii. Efficient priority queues via heaps.

AVL TREE

The AVL tree is named after its two inventors, G.M. Adelson-Velsky and E.M.
Landis, who published it in their 1962 paper "An algorithm for the
organization of information."
Avl tree is a self-balancing binary search tree. In an AVL tree, the heights of
the two child subtrees of any node differ by at most one; therefore, it is also
said to be height-balanced.

The balance factor of a node is the height of its right subtree minus the
height of its left subtree and a node with balance factor 1, 0, or -1 is
considered balanced. A node with any other balance factor is considered
unbalanced and requires rebalancing the tree. This can be done by avl tree
rotations

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Need for AVL tree

The disadvantage of a binary search tree is that its height can be as large
as N-1
This means that the time needed to perform insertion and deletion and
many other operations can be O(N) in the worst case
We want a tree with small height
A binary tree with N node has height at least Q(log N)
Thus, our goal is to keep the height of a binary search tree O(log N)
Such trees are called balanced binary search trees. Examples are AVL
tree, red-black tree.

Thus we go for AVL tree.

HEIGHTS OF AVL TREE

An AVL tree is a special type of binary tree that is always "partially" balanced.
The criteria that is used to determine the "level" of "balanced-ness" which is
the difference between the heights of subtrees of a root in the tree. The
"height" of tree is the "number of levels" in the tree. The height of a tree is
defined as follows:

1. The height of a tree with no elements is 0
2. The height of a tree with 1 element is 1
3. The height of a tree with > 1 element is equal to 1 + the height of its

tallest subtree.
4. The height of a leaf is 1. The height of a null pointer is zero.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

The height of an internal node is the maximum height of its children plus 1.

FINDING THE HEIGHT OF AVL TREE

AVL trees are identical to standard binary search trees except that for every
node in an AVL tree, the height of the left and right subtrees can differ by at
most 1 . AVL trees are HB-k trees (height balanced trees of order k) of order
HB-1. The following is the height differential formula:
|Height (Tl)-Height(Tr)|<=k

When storing an AVL tree, a field must be added to each node with one of
three values: 1, 0, or -1. A value of 1 in this field means that the left subtree
has a height one more than the right subtree. A value of -1 denotes the
opposite. A value of 0 indicates that the heights of both subtrees are the same.
EXAMPLE FOR HEIGHT OF AVL TREE

An AVL tree is a binary search tree with a balanced condition.

Balance Factor(BF) = Hl --- Hr. Hl

=> Height of the left subtree. Hr

=> Height of the right subtree.

If BF={ --1,0,1} is satisfied, only then the tree is balanced.

AVL tree is a Height Balanced Tree.

If the calculated value of BF goes out of the range, then balancing has to be

done.

Rotation :

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.
i
p
ii.
a
A
d
n
e
in
e
se
p
rt
z
io
.
n
n

i
e
nt
t
o Right child’s left subtree.

Modification to the tree. i.e. , If the AVL tree is Imbalanced, proper rotations

has to be done.

A rotation is a process of switching children and parents among two or three

adjacent nodes to restore balance to a tree.

• There are two kinds of single rotation:

Right Rotation Left Rotation

An insertion or deletion may cause an imbalance in an AVL tree.

The deepest node, which is an ancestor of a deleted or an inserted node, and

whose balance factor has changed to -2 or +2 requires rotation to rebalance

the tree.

Balance Factor :

BF= --1
7

BF=1
5 12

BF= --1

2 10 14

BF= 0 BF=0 BF=1

11
BF=0

This Tree is an AVL Tree and a height balanced tree.

An AVL tree causes imbalance when any of following condition occurs:

i. An insertion into Right child’s right subtree.

ii. An insertion into Left child’s left subtree.

http://www.padeepz.net/
http://www.ipii.aadn/

www.padeepz.net

www.padeepz.net

iv. An insertion into Left child’s right subtree.

These imbalances can be overcome by,

1. Single Rotation – (If insertion occurs on the outside,i.e.,LL or RR)

-> LL (Left -- Left rotation) --- Do single Right.

-> RR (Right -- Right rotation) – Do single Left.

2. Double Rotation - (If insertion occurs on the inside,i.e.,LR or RL)

-> RL (Right -- Left rotation) --- Do single Right, then single Left.

-> LR (Left -- Right rotation) --- Do single Left, then single Right.

General Representation of Single Rotation

1. LL Rotation :

• The right child y of a node x becomes x's parent.

• x becomes the left child of y.

• The left child T2 of y, if any, becomes the right child of x.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

2. RR Rotation :

• The left child x of a node y becomes y's parent.

• y becomes the right child of x.

• The right child T2 of x, if any, becomes the left child of y.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

General Representation of Double Rotation

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

1. LR(Left -- Right rotation):

2. RL(Right -- Left rotation) :

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

EXAMPLE:

LET US CONSIDER INSERTING OF NODES 20,10,40,50,90,30,60,70 in an AVL

TREE

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

AVL TREE ROUTINES

Creation of AVL Tree and Insertion

Struct avlnode

Typedef struct avlnode *position;

Typedef structavlnode *avltree;

Typedef int elementtype;

Struct avlnode

{

Elementtype element;

Avltree left;

Avltree right;

Int height;

};

Static int height(position P)

{

If(P==NULL)

return -1;

else

return P-->height;

}

Avltree insert(elementtype X, avltree T)

{

If(T==NULL)

{ / * Create and return a one node tree*/

T= malloc(sizeof(structavlnode));

If(T==NULL)

Fatalerror(“Out of Space”);

Else

{

T-->element=X;

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

T-->height=0;

T-->left=T-->right=NULL;

}

}

Else if(X<T-->element)

{

T-->left=Insert(X,T-->left);

If(height(T-->left) - height(T-->right)==2)

If(X<T-->left-->element)

T=singlerotatewithleft(T);

Else

T=doublerotatewithleft(T);

}

Else if(X>T-->element)

{

T-->right=insert(X,T-->right);

If(height(T-->left) - height(T-->right)==2)

If(X>T-->right-->element)

T= singlerotatewithright(T);

Else

T= doublerotatewithright(T);

}

T-->height=max(height(T-->left),height(T-->right)) + 1;

Return T;

}

Routine to perform Single Left :

. This function can be called only if k2 has a left child.

. Perform a rotate between a node k2 and its left child.

. Update height, then return the new root.

Static position singlerotatewithleft(position k2)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

{

Position k1;

k1=k2-->left;

k2-->left=k1-->right;

k1-->right=k2;

k2-->height= max(height(k2-->left),height(k2-->right)) + 1;

k1-->height= max(height(k1-->left),height(k1-->right)) + 1;

return k1; / * New Root * /

}

Routine to perform Single Right :

Static position singlerotationwithright(position k1)

{

position k2;

k2=k1-->right;

k1-->right=k2-->left;

k2-->left=k1;

k2-->height=max(height(k2-->left),height(k2-->right)) + 1;

k1-->height=max(height(k1-->left),height(k1-->right)) + 1;

return k1; / * New Root * /

}

Double rotation with Left :

Static position doublerotationwithleft(position k3)

{

/ * Rotate between k1 & k2 * /

k3-->left=singlerotatewithright(k3-->left);

/ * Rotate between k3 & k2 * /

returnsinglerotatewithleft(k3);

}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Double rotation with Right :

Static position doublerotatewithright(position k1)

{

/ * Rotation between k2& k3 * /

k1-->right=singlerotatewithleft(k1-->right);

/ * Rotation between k1 &k2 * /

returnsinglerotatewithright(k1);

}

PROBLEMS

APPLICATIONS

AVL trees play an important role in most computer related applications. The
need and use of avl trees are increasing day by day. their efficiency and less
complexity add value to their reputation. Some of the applications are

Contour extraction algorithm
Parallel dictionaries
Compression of computer files
Translation from source language to target language
Spell checker

ADVANTAGES OF AVL TREE

AVL trees guarantee that the difference in height of any two subtrees
rooted at the same node will be at most one. This guarantees an
asymptotic running time of O(log(n)) as opposed to O(n) in the case of a
standard bst.
Height of an AVL tree with n nodes is always very close to the

theoretical minimum.

Since the avl tree is height balabced the operation like insertion and
deletion have low time complexity.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Since tree is always height balanced.Recursive implementation is
possible.
The height of left and the right sub-trees should differ by atmost
1.Rotations are possible.

DISADVANTAGES OF AVL TREE

one limitation is that the tree might be spread across memory
as you need to travel down the tree, you take a performance hit at every
level down
one solution: store more information on the path
Difficult to program & debug ; more space for balance factor.
asymptotically faster but rebalancing costs time.
most larger searches are done in database systems on disk and use
other structures

BINARY HEAPS

A heap is a specialized complete tree structure that satisfies the heap
property:

it is empty or
the key in the root is larger than that in either child and both subtrees
have the heap property.

In general heap is a group of things placed or thrown, one on top of the
other.
In data structures a heap is a binary tree storing keys at its nodes.
Heaps are based on the concepts of a complete tree

Structure Property :

COMPLETE TREE
A binary tree is completely full if it is of height, h, and has 2h+1-1 nodes.

it is empty or
its left subtree is complete of height h-1 and its right subtree is
completely full of height h-2 or

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

its left subtree is completely full of height h-1 and its right subtree is
complete of height h-1.

A complete tree is filled from the left:

all the leaves are on
o the same level or
o two adjacent ones and

all nodes at the lowest level are as far to the left as possible.

PROCEDURE

INSERTION:

Let us consider the element X is to be inserted.

First the element X is added as the last node.
It is verified with its parent and adjacent node for its heap property.
The verification process is carried upwards until the heap property is
satisfied.
If any verification is not satisfied then swapping takes place.
Then finally we have the heap.

DELETION:

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

I PRIORITY QUEUE

The deletion takes place by removing the root node.
The root node is then replaced by the last leaf node in the tree to obtain
the complete binary tree.
It is verified with its children and adjacent node for its heap property.
The verification process is carried downwards until the heap property
is satisfied.
If any verification is not satisfied then swapping takes place.
Then finally we have the heap.

PRIORITY QUEUE

It is a data structure which determines the priority of jobs.

The Minimum the value of Priority, Higher is the priority of the job.

The best way to implement Priority Queue is Binary Heap.

A Priority Queue is a special kind of queue datastructure. It has zero or more

collection of elements, each element has a priority value.

• Priority queues are often used in resource management, simulations,

and in the implementation of some algorithms (e.g., some graph

algorithms, some backtracking algorithms).

• Several data structures can be used to implement priority queues.

Below is a comparison of some:

Basic Model of a Priority Queue

Deletion(h) Insertion(h)

Implementation of Priority Queue

1. Linked List.

2. Binary Search Tree.

3. Binary Heap.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Linked List :

A simple linked list implementation of priority queue requires o(1) time

to perform the insertion at the front and o(n) to delete at minimum element.

Binary Search tree :

This gives an average running time of o(log n) for both insertion and

deletion.(deletemin).

The efficient way of implementing priority queue is Binary Heap (or)

Heap.

Heap has two properties :

1. Structure Property.

2. Heap Order Preoperty.

1. Structure Property :

The Heap should be a complete binary tree, which is a completely filled

tree, which is a completely filled binary tree with the possible exception of the

bottom level, which is filled from left to right.

A Complete Binary tree of height H, has between 2h and (2h+1 - 1) nodes.

Sentinel Value :

The zeroth element is called the sentinel value. It is not a node of the tree.

This value is required because while addition of new node, certain operations

are performed in a loop and to terminate the loop, sentinel value is used.

Index 0 is the sentinel value. It stores irrelated value, inorder to terminate the

program in case of complex codings.

Structure Property : Always index 1 should be starting position.

2. Heap Order Property :

The property that allows operations to be performed quickly is a heap order
property.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Mintree:
Parent should have lesser value than children.

Maxtree:
Parent should have greater value than children.

These two properties are known as heap properties

Max-heap
Min-heap

Min-heap:
The smallest element is always in the root node.Each node must have a

key that is less or equal to the key of each of its children.
Examples

Max-Heap:
The largest Element is always in the root node.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Each node must have a key that is greater or equal to the key of each of its
children.

Examples

HEAP OPERATIONS:

There are 2 operations of heap

Insertion
Deletion

2.12.1 Insert:
Adding a new key to the heap

Rules for the insertion:

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

To insert an element X, into the heap, do the following:

Step1: Create a hole in the next available location , since otherwise the tree

will not be complete.

Step2: If X can be placed in the hole, without violating heap order, then do

insertion, otherwise slide the element that is in the hole’s parent node, into

the hole, thus, bubbling the hole up towards the root.

Step3: Continue this process until X can be placed in the hole.

Example Problem :

1. Insert- 18 in a Min Heap

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

2. Insert the keys 4, 6, 10, 20, and 8 in this order in an originally empty max-

heap

2.12.2 Delete-max or Delete-min:

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Removing the root node of a max- or min-heap, respectively

Procedure for Deletemin :

* Deletemin operation is deleting the minimum element from the loop.

* In Binary heap | min heap the minimum element is found in the root.

* When this minimum element is removed, a hole is created at the root.

* Since the heap becomes one smaller, make the last element X in the heap to

move somewhere in the heap.

* If X can be placed in the hole, without violating heap order property, place it ,

otherwise slide the smaller of the hole’s children into the hole, thus , pushing

the hole down one level.

* Repeat this process until X can be placed in the hole.

This general strategy is known as Percolate Down.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

EXAMPLE PROBLEMS :

1. DELETE MIN

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

2. Delete Min -- 13

BINARY HEAP ROUTINES [Priority Queue]

Typedef struct heapstruct *priorityqueue;

Typedef int elementype;

Struct heapstruct

{

int capacity;

int size;

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

elementtype *element;

};

Declaration of Priority Queue

Priorityqueue initialize(int maxelement)

{

Priorityqueue H;

If(minpsize<maxelements)

Error(“Priority queue size is too small”);

H=malloc(sizeof(struct heapstruct));

If(H=NULL)

Fatalerror(“Out of space”);

/ * Allocate the array plus one extra for sentinel * /

H-->elements=malloc((maxelements+1)*sizeof(elementtype));

If(H-->elements==NULL)

Fatalerror(“out of space”);

H-->capacity=maxelements;

H-->size=0;

H-->elements[0]=mindata;

Return H;

}

/ * H-->elements[0]=sentinelvalue * /

Insert Routine

Void insert(elementtype X, priorityqueue H)

{

int i;

if(isfull(H))

{

Error(“Priority queue is full”);

Return;

}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

For(i=++H-->size;H-->elements[i/2]>X;i=i/2)

H-->elements[i]=H-->elements[i/2];

H-->elements[i]=X;

}

Delete Routine

Elementtype deletemin(priorityqueue H)

{

int i,child;

elementtype minelement,lastelement;

if(isempty(H))

{

Error(“Priority queue is empty”);

Return H-->element[0];

}

Minelement=H-->element[1];

Lastelement=H-->element[H-->size--];

For(i=1;i*2<=H-->size;i=child)

{

/ *Find smaller child */

Child=i*2;

If(child!=H-->size && H-->elements[child++]<H-->elements[child])

{

Child++;

}

/ * Percolate one level * /

If(lastelement>H-->elements[child])

H-->element[i]=H-->elements[child];

Else

Break;

}

H-->element[i]=lastelement;

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

10

15 12

20 30

10

8 12

20 30

8

10 12

20 30

10

15
12

20 30

10

22 12

20 30

Return minelement;

}

Other Heap Operations

1. Decrease Key.

2. Increase Key.

3. Delete.

4. Build Heap.

1. Decrease Key :

The Decrease key(P,∆,H) operation decreases the value of the key at

position P, by a positive amount ∆. This may violate the heap order property,

which can be fixed by percolate up Ex : decreasekey(2,7,H)

2. Increase Key :

The Increase Key(P,∆,H) operation increases the value of the key at

position P, by a positive amount ∆. This may violate heap order property,

which can be fixed by percolate down.

Ex : increase key(2,7,H)

10

20 12

22 30

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

10

20
12

22 30

10

-∞ 12

22 30

-∞

10 12

22 30

10
12

20

10

12

20

10

22 12

30

3. Delete :

The delete(P,H) operation removes the node at the position P, from the heap

H. This can be done by,

Step 1: Perform the decrease key operation, decrease key(P,∞,H).

Step 2: Perform deletemin(H) operation.

Step 1: Decreasekey(2, ∞,H)

Step 2 : Deletemin(H)

APPLICATIONS

The heap data structure has many applications

Heap sort
Selection algorithms

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Graph algorithms

Heap sort :
One of the best sorting methods being in-place and with no quadratic

worst-case scenarios.

Selection algorithms:
Finding the min, max, both the min and max, median, or even the k-th

largest element can be done in linear time using heaps.

Graph algorithms:
By using heaps as internal traversal data structures, run time will be

reduced by an order of polynomial. Examples of such problems are Prim's
minimal spanning tree algorithm and Dijkstra's shortest path problem.

ADVANTAGE

The biggest advantage of heaps over trees in some applications is that

construction of heaps can be done in linear time.

It is used in
o Heap sort
o Selection algorithms
o Graph algorithms

DISADVANTAGE

Heap is expensive in terms of

safety
maintenance
performance

Performance :
Allocating heap memory usually involves a long negotiation with the OS.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Maintenance:
Dynamic allocation may fail; extra code to handle such exception is

required.

Safety :
Object may be deleted more than once or not deleted at all .

B-TREES

Multi-way Tree

A multi-way (or m-way) search tree of order m is a tree in which

Each node has at-most m subtrees, where the subtrees may be
empty.
Each node consists of at least 1 and at most m-1 distinct keys
The keys in each node are sorted.

The keys and subtrees of a non-leaf node are ordered as:
 T0, k1, T1, k2, T2, . . . , km-1, Tm-1 such that:

All keys in subtree T0 are less than k1.
All keys in subtree Ti , 1 <= i <= m - 2, are greater than ki but less than
ki+1.
All keys in subtree Tm-1 are greater than km-1

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

A B-tree of order m (or branching factor m), where m > 2, is either an empty

tree or a multiway search tree with the following properties:

The root is either a leaf or it has at least two non-empty subtrees

and at most m non-empty subtrees.

Each non-leaf node, other than the root, has at least m/2 non-

empty subtrees and at most m non-empty subtrees. (Note: x is the

lowest integer > x).

The number of keys in each non-leaf node is one less than the

number of non-empty subtrees for that node.

All leaf nodes are at the same level; that is the tree is perfectly

balanced.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Insertion in B-Trees

OVERFLOW CONDITION:

A root-node or a non-root node of a B-tree of order m overflows if, after a

key insertion, it contains m keys.

Insertion algorithm:

If a node overflows, split it into two, propagate the "middle" key to the

parent of the node. If the parent overflows the process propagates upward. If

the node has no parent, create a new root node.

• Note: Insertion of a key always starts at a leaf node.

Insertion in a B-tree of odd order

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this order in

an initially empty B-tree of order 3

Insertion in a B-tree of even order

At each node the insertion can be done in two different ways:

• right-bias: The node is split such that its right subtree has more keys

than the left subtree.

• left-bias: The node is split such that its left subtree has more keys than

the right subtree.

Example: Insert the key 5 in the following B-tree of order 4:

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net gate

www.padeepz.net

questions

and answers

Binary Trees

1. Construct a binary tree whose preorder traversal is K L N M P R Q S T and in order traversal is N L K P R M S Q T

2. (i) Define the height of a binary tree or subtree and also define a height balanced (AVL) tree.

The height of a tree or a sub tree is defined as the length of the longest path from the root node to the leaf.

A tree is said to be height balanced if all the nodes are having a balance factor -1,0 or 1. The balance factor is the height of the left

sub tree minus height of the right sub tree

(ii) Mark the balance factor of each mode on the tree given in fig 7.1 and state whether it is height-balanced

(iii) Into the same tree given in 7(ii) above, insert the integer 13 and show the new balance factors that would arise if the tree

is no rebalanced. Finally, carry the required rebalancing of the tree and show the new tree with the balance factors on each mode.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

3. The maximum number of nodes in a binary tree of level k, k ≥ 1 is

(A) 2k + 1

(B) 2k - 1
(C) 2k-1

(D) 2k-1 - 1

[B]

Here k starts from 1

For the root node k=1, no. of nodes in root node is 1

For k=2, no.of nodes in the binary tree is 3,

For k=3,no. of nodes is 7

For k=4, no of nodes is 15.

………

………

So for any value k it is 2^k – 1

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

4. Consider the height balanced tree T1, with values stored at only the leaf nodes, shown in Fig. 4

Fig 4

(i) Show how to merge to the tree T1 elements from tree T2 shown in Fig. 5 using node D of tree T1

Fig 5

(ii) What is the time complexity of a merge operation on balanced trees T1 and T2 where T1 and T2 are of height h1 and h2

respectively, assuming rotation scheme are given. Give reasons

5. The number of different ordered trees with 3 nodes labeled Y, Y, Z are

(A) 16

(B) 8

(C) 12
(D) 24

Ans: 15

There are 5 tree unordered tree structures possible.

(a) (b) (c) (d) (e)

However, we want to order the nodes based on Y, Y and Z, there are 3 possibilities associated with every tree structure.

Hence, 5 * 3 = 15

6. Construct a binary tree whose preorder and inorder sequences are A B M H E O C P G J D K L I N F and H M C O E B A G P K L

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

D I N J F respectively, where A, B, C, D, E,are the labels of the tree nodes. Is it unique?

(a) (b)

(c) (d)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

(e)

7. The weighted external path length of the binary tree in Fig. 2 is .

Fig 2

weighted external path = (2*4) + (4*4) + (5*4) + (7*4) + (9*3) + (10*3) + (15*1)

= 8 + 16 + 20 + 28 + 27 + 30 + 15

=144

8. If the binary tree in Fig. 3 is traversed in inorder, then the order in which the nodes will be visited is

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Fig 3

4 1 6 7 3 2 5 8

The in order sequence is left, root, right .

9. Consider the binary tree in Fig. 7:

(a) What structure is represented by the binary tree?

(b) Give the different steps for deleting the node with key 5 so that the structure is preserved.
(c) Outline a procedure in the pseudo-code to delete an arbitrary node from such a binary tree with n nodes that preserves the

structure. What is the worst case complexity of your procedure?

Fig. 7

(a)Min-Heap

(b)

i. Swap(27,5)

ii. Delete 5

iii. Minheapify

(c)

Alogithm delMinHeap()

Step 1: let I th node is to be deleted.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 Step 2: copy last element to this location

Step 3: remove last element of array

Step 4: perform Min-Heapify on I th node

Algorithm Min-Heapify()

A-array, i-ith node

Step 1: if 2*i<=size[A] and A[2i]<A[i] /*left child*/

Then smallest=2i

Else smallest =i

Step 2: if 2i+1 <=size[A] and A[2i+1] < A[smallest]

Then smallest=2i+1

Step3: If smallest != i

Then swap A[i] and A[smallest]

Step 3: Min-Heapify(A,smallest)

10. if a tree has n1 nodes of degree 1, n2 nodes of degree 2, …. nm nodes of degree m, give a formula for the number of terminal nodes

n0 of the tree in terms of n1, n2, …., nm.

Sum of degree of all the nodes will be-1*n1+2*n2…..m*nm ------ (1)

We know sum of degree of all the nodes is equal to number of edges ----- (2)

And number of edges= number of total node-1 ------- (3)

Total number of nodes= n0+n1+n2….nm ----------- (4)

From 1,2,3,4 we have

1*n1+2*n2……m*nm= (n0+n1+n2……nm)-1

We get

Ans: n0 = 1+[1*n2(2-1) +2*n3.+(m-1)*nm]

11. A 2-3 tree is a tree such that
(a) all internal nodes have either 2 or 3 children

(b) all paths from root to the leaves have the same length.
The number of internal nodes of a 2-3 tree having 9 leaves could be

(A) 4

(B) 5

(C) 6

(D) 7

A and D

At leaf-level:

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 1. group the nodes into 3 sets of 3 …… it gives 4 internal nodes

2. group the nodes into 3 sets of 2 and 1 set of 3 …… it gives 7 internal nodes

12. A K-ary tree is such that every node has either K sons or no sons. If L and I are the number of leaves and internal nodes

respectively, then express L in terms of K and I.

If there is only one 1 internal node then it have k leaf nodes.

Adding one more internal node means making 1 leaf node as internal and adding k leaf nodes.

So if there are I internal nodes it have I*k-(I-1) leaf nodes

L=K*(I-1)+1

13. A 3-ary tree is a tree in which every internal node has exactly three children. Use the induction to prove that the number of leaves

in a 3-ary tree with n internal nodes is 2(n-1) + 3.

When,

n = 0  l = 2(0 - 1) + 3 =1

n = 1  l = 2(1 - 1) + 3 = 3

In this way let the rule be true for n = k

Hence l = 2(k - 1) + 3

For n = k + 1

However, from observation: l(k + 1) = l(k) + 3 – 1

i.e. l(k + 1) = 2(k - 1) + 3 + 3 -1

= 2k + 3

= 2((k + 1)-1) + 3

Thus, by induction, the rule is true for all k.

14. A complete n-ary tree is one in which every node has 0 or n sons. If x is the number of internal nodes of a complete n-ary tree, the

number of leaves in it is given by

(a) x (n – 1) + 1 (b) xn – 1

(c) xn + 1 (d) x (n + 1)

[A]

Degree of internal nodes (except root) = n + 1

Degree of root = n

Degree of leaf nodes = 1

Also,

No of edges = no. of nodes – 1

But n = x + L

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 Thus, no. of edges = x + L -1

From graph theory: sum of degree = 2 * (no. of edges)

Case 1: the tree has only 1 node.

Sum of degree = 2 * (no of edges) = 0

Case 2: The tree has more than one node.

(n + 1) * (x - 1) + n + L = x + L -1

Ans: L = x(n - 1) + 1

15.

16. The minimum number of interchanges needed to convert the array

89, 19, 40, 17, 12, 10, 2, 5, 7, 11, 6, 9, 70

into a heap with the maximum element at the root node is

(A) 0 (B) 1

(C) 2 (D) 3

Only element 70 violates the rule. Hence, it must be shifted to its proper position.

Step1: swap(10, 70)

Step2: swap(40, 70)

Hence, only 2 interchanges are required.

17. Heap allocation is required for languages

(A) that support recursion (B) that support dynamic data structures

(C) that use dynamic scope rules (D) none of the above

[B] Dynamic data structures have the capacity to grow. Hence, they need some sort of memory
allocation during runtime. The heap is required to provide this memory.

18. A binary tree T has n leaf nodes. The number of nodes of degree 2 in T is

(a) log2n

(b) n - 1

(c) n
(d) 2n

[B] Total no. of nodes in the tree

n = n0 + n1 + n2

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 Where ni is the number of nodes with i children.

Total no. of edges in the tree

e = n0*0 + n1*1 + n2*2

But e = n ‐ 1

n1 + 2*n2 = n0 + n1 + n2 – 1

n2 = n0 – 1

n2 = n ‐ 1

19. What is the number of binary trees with 3 nodes which when traversed in post-order give the sequence A, B, C? Draw all these

binary trees.

Ans: 5

(a) (b) (c) (d) (e)

20. In the balanced binary tree in Fig. 1.14 given below, how many nodes will become unbalanced when a node is inserted as a child of

 the node “g”?

 Fig. 1.14

(A) 1

 (B) 3
 (C) 7
 (D) 8
 [B]

 After insertion

 Bf(a) = 2

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 Bf(b) = 2

Bf(c) = 2

Bf(d) = 0

Bf(e) = 1

Bf(f) = 0

Bf(g) = 1

Which of the following sequences denotes the post-order traversal sequence of the tree of FIG 1.14?

(A) f e g c d b a (B) g c b d a f e

(C) g c d b f e a (D) f e d g c b a

[C]

Post-order = Left sub-tree – right sub-tree – self

21. A binary search tree is generated by inserting in order the following integers:

50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24

The number of nodes in the left subtree and right subtree of the root is respectively is

(A) (4, 7) (B) (7, 4)

(C) (8, 3) (D) (3, 8)

[B]

Nodes to in the left subtree are less than 50, while nodes in the right sub-tree are greater than 50.

No. of nodes less than 50 = 7

No. of nodes greater than 50 = 4

22. A binary search tree is used to locate the number 43. Which of the following probe sequences are possible and which are not?

Explain.

(A) 61 52 14 17 40 43

(B) 2 3 50 40 60 43

(C) 10 65 31 48 37 43

(D) 81 61 52 14 41 43
(E) 17 77 27 66 18 43

Possible:[A,C, D]

Not possible:

[B] – at 50 the left branch is taken. Hence, all nodes in the list after 50 must be less than it. But 60 is not similarly in[D]18 is

smaller than 27

23. A binary search tree contains the values 1, 2, 3, 4, 5, 6, 7, 8. The tree is traversed in pre-order and the values are printed out.
Which of the following sequences is a valid output?

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 (A) 5 3 1 2 4 7 8 6 (B) 5 3 1 2 6 4 8 7

(C) 5 3 2 4 1 6 7 8 (D) 5 3 1 2 4 7 6 8

Valid: d

Invalid: a, b, c

A preorder list has the following format –

<root> <left sub-tree (smaller elements)> <right sub-tree (larger elements)>

This format is applied recursively to the sub-trees.

24. A size balanced binary tree is a binary tree in which for every node, the difference between the number of nodes in the left and

right subtree is at most 1. The distance of a node from the root is the length of the path from the root to the node. The height of a

binary tree is maximum distance of a leaf node from the root.

(a) Prove, by using induction on h, that a size-balanced binary tree of height h contains at least 2h nodes.

When

h = 0 ……… least no. of nodes = 2 ^ 0 = 1

h = 1 ……… least no. of nodes = 2 ^ 1 = 2

h = 2 ……… least no. of nodes = 2 ^ 2 = 4

Assume that the rule is true for h = k

Then the min no. of nodes = 2 ^ k nodes

If we increase the height by 1 by adding a node, we must also add nodes to fill the (max level -1) level.

This would mean doubling the nodes

Thus 2^ (k+1)

Hence, proved

(b) In a size-balanced binary tree of height h ≥ 1, how many nodes are at distance h-1 from the root? Write only the answer

without any explanation

2 h-1

25. Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty binary search tree. the binary

search tree uses the usual ordering on natural numbers. What is the inorder traversal sequence of the resultant tree?

(A) 7 5 1 0 3 2 4 6 8 9

(B) 0 2 4 3 1 6 5 9 8 7

(C) 0 1 2 3 4 5 6 7 8 9

(D) 9 8 6 4 2 3 0 1 5 7

[C] In order traversal of the binary search tree is always in ascending order

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

26. Which of the following statements is false?

(a) A tree with n nodes has (n-1) edges

(b) A labeled rooted binary tree can be uniquely constructed given its post-order and pre-order traversal results.

(c) A complete binary tree with n internal nodes has (n+1) leaves

(d) The maximum number of nodes in a binary tree of height h is (2h+1 – 1)

[B and D] With inorder,preorder or with inorder, postorder it is possible for a unique combination

Maximum number of nodes in a binary tree of height h is (2h – 1)

27. Draw the binary tree with the node labels a, b, c, d, e, f and g for which the inorder and post-order traversals result in the following

sequences

Inorder a f b c d g e

Postorder a f c g e d b

(a) (b) (c)

28. Draw the min-heap that results from insertion of the following elements in order into an initially empty min-heap: 7, 6, 5, 4, 2, 3,

1. show the result after the deletion of the root of this heap.

(a) (b) (c)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

(d) (e)

29. The number of leaf nodes in a rooted tree of n node, with each node having 0 or 3 children is:
A. n/2

B. (n – 1)/3

C. (n – 1)/2

D. (2n + 1)/3

[D]Degree of internal node (except root node) = 4

Degree of root = 3 or 0

Degree of leaf node = 1

No of edges = n – 1

From graph theory: sum of degree = 2 * (no. of edges)

Case 1: tree contains only root

Sum of degree = 2 * (no of edges) = 0

Case 2:

(n – L - 1) * 4 + 3 + L * 1 = 2 * (n - 1)

Ans: L = (2n + 1)/3

30. In a binary tree, a full node is defined to be a node with 2 children. Use the induction on the height of the binary tree to prove that

the number of full nodes plus one is equal to the numbers of leaves.

1(root) element contains 2 children .no of full nodes=1,no. of leaves=2

2 full nodes have 3 leaves

3 full nodes have 4 leaves

…………………………..

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 ………………………….

N full nodes have N+1 leaves

31. Consider the following nested representation of binary trees: (X Y Z) indicates Y Z are the left and right subtrees, respectively, of

node X. Note that Y and Z may be NULL, or further nested. Which of the following represents a valid binary tree?

(A) (1 2 (4 5 6 7))

(B) (1 ((2 3 4) 5 6) 7)

(C) (1 (2 3 4) (5 6 7))

(D) (1 (2 3 NULL) (4 5))
[C] Every node contains two sub trees.

In [A] 4 contains 3 sub trees which violate the property.

[B] node 2 has 4 child 3 and 4 and 5 and 6

[D] node 4 right child is not specified NULL.

32. Let LASTPOST, LASTIN and LASTPRE denotes the last vertex visited in a post-order, inorder and pre-order traversal

respectively, of a completely binary tree. Which of the following is always true?

(A) LASTIN = LASTPOST

(B) LASTIN = LASTPRE

(C) LASTPRE = LASTPOST

(D) None of the above

[B]

In-order = LNR

Pre-order = NLR

Post-order = LRN

The rightmost element will be the last element in both in and pre orders

33. (a) Insert the following keys one by one into a binary search tree in order specified.

15, 32, 20, 9, 3, 25, 12, 1

Show the final binary search tree after insertions.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

(b) Draw the binary search tree after deleting 15 from it.

(c) Complete the statements S1, S2 and S3 in the following function so that the function computes the depth of a binary tree

rooted at t.

typedef struct tnode {

int key;

struct tnode *left, *right;

} *Tree;

int depth (Tree t)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 {

int x,y;

if (t = = NULL) return 0;

x = depth(t →left);

S1: ;

S2: if(x > y) return ;

S3: else return ;

}

S1: y=depth(t->right)

S2: x+1

S3: y+1

34. A weight balanced tree is a binary tree in which for each node, the number of nodes in the left subtree is at least half and at most

twice the number of nodes in the right subtree. The maximum possible height (number of nodes on the path from the root to the

furthest leaf) of such a tree on n nodes is best described by which of the following?:

A. log2n

B. log4/3 n

C. log3n
D. log3/2 n

35. Draw all binary trees having exactly three nodes labeled A, B, and C on which pre-order traversal gives the sequence C, B, A.

Ans: 5

(a) (b) (c) (d) (e)

36. In heap with n elements with the smallest element at the root, the 7th smallest element can be found in time

(A) Θ(n log n)

(B) Θ(n)

(C) Θ(log n)

(D) Θ(1)
In order to find the 7th element one must remove elements one by one from the heap, until the 7th smallest element is found.

As a heap may contain duplicate values, we may need to remove more then 7 elements. At the worst case we will have to remove

all n elements.

1 deletion takes O(log(n)). Hence ‘n’ deletes will take O(nlog(n))

37. Construct a binary tree whose preorder traversal is K L N M P R Q S T and inorder traversal is N L K P R M S Q T

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

38. (i) Define the height of a binary tree or subtree and also define a height balanced (AVL) tree.

The height of a tree or a sub tree is defined as the length of the longest path from the root node to the leaf.

A tree is said to be height balanced if all the nodes are having a balance factor -1,0 or 1. The balance factor is the height of the left

sub tree minus height of the right sub tree

(ii) Mark the balance factor of each mode on the tree given in fig 7.1 and state whether it is height-balanced

(iii) Into the same tree given in 7(ii) above, insert the integer 13 and show the new balance factors that would arise if the tree

is no rebalanced. Finally, carry the required rebalancing of the tree and show the new tree with the balance factors on each mode.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

39. The number of rooted binary trees with n nodes is,

(A) Equal to the number of ways of multiplying (n+1) matrices.

(B) Equal to the number of ways of arranging n out of 2n distinct elements.

1  2n 
(C) Equal to  

(n  1)  n 
(D) Equal to n!

[C]

N=1 1 tree

N=2 2 trees

N=3 5 trees

N=4 14 trees

1, 2 ,5, 14… are catlan numbers

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

40. The maximum number of nodes in a binary tree of level k, k ≥ 1 is
(E) 2k + 1

(F) 2k - 1
(G) 2k-1

(H) 2k-1 - 1

41. Construct a binary tree whose preorder and inorder sequences are A B M H E O C P G J D K L I N F and H M C O E B A G P K L

D I N J F respectively, where A, B, C, D, E,are the labels of the tree nodes. Is it unique?

(a) (b)

(c) (d)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

(e)

42. The minimum number of comparisons required to sort 5 elements is .
4 using insertion sort when numbers are in sorted order

43. The weighted external path length of the binary tree in Fig. 2 is .

Fig 2

weighted external path = (2*4) + (4*4) + (5*4) + (7*4) + (9*3) + (10*3) + (15*1)

= 8 + 16 + 20 + 28 + 27 + 30 + 15

=144

44. If the binary tree in Fig. 3 is traversed in inorder, then the order in which the nodes will be visited is

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Fig 3

In-order traversal: 4 1 6 7 3 2 5 8

45. Consider the binary tree in Fig. 7:

(d) What structure is represented by the binary tree?

(e) Give the different steps for deleting the node with key 5 so that the structure is preserved.
(f) Outline a procedure in the pseudo-code to delete an arbitrary node from such a binary tree with n nodes that preserves the

structure. What is the worst case complexity of your procedure?

Fig. 7

(a)Min-Heap

(b)

iv. Swap(27,5)

v. Delete 5

vi. Minheapify

(c)

Alogithm delMinHeap()

Step 1: let I th node is to be deleted.

Step 2: copy last element to this location

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 Step 3: remove last element of array

Step 4: perform Min-Heapify on I th node

Algorithm Min-Heapify()

A-array, i-ith node

Step 1: if 2*i<=size[A] and A[2i]<A[i] /*left child*/

Then smallest=2i

Else smallest =i

Step 2: if 2i+1 <=size[A] and A[2i+1] < A[smallest]

Then smallest=2i+1

Step3: If smallest != i

Then swap A[i] and A[smallest]

Step 3: Min-Heapify(A,smallest)

46. Consider a binary max-heap implemented using an array.

 Which one of the following array represents a binary max-heap?

 (A) { 25, 12, 16, 13, 10, 8, 14 }
 (B) { 25, 14, 13, 16, 10, 8, 12 }
 (C) { 25, 14, 16, 13, 10, 8, 12 }
 (D) { 25, 14, 12, 13, 10, 8, 16 }
 [C]
 What is the content of the array after two delete operations on the correct answer to the previous question?
 (A) { 14, 13, 12, 10, 8 }
 (B) { 14, 12, 13, 8, 10}
 (C) { 14, 13, 8, 12, 10 }
 (D) { 14, 13, 12, 8, 10 }
 [D]

 (A) 12 has child 13

(B) 14 has child 16

(D) 12 has child 16

Hence, they are not max-heaps.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

(a) (b) (c)

(d) (e)

47. What is the maximum height of any AVL-tree with 7 nodes? Assume that the height of a tree with a single node is 0.

(A) 2 (B) 3 (C) 4 (D) 5

[B]The maximum height of an AVL tree with n nodes is 1.44log n.

By substituting n=7 we get 4.03,since it is given that the height of a tree with a single node is 0.Therefore the answer is 3.

48. The following three are known to be the preorder, inorder and postorder sequences of a binary tree. But it is not known which is

which.

I. MBCAFHPYK

II. KAMCBYPFH
III. MABCKYFPH

Pick the true statement from the following.

(A) I and II are preorder and inorder sequences, respectively

(B) I and III are preorder and postorder sequences, respectively

(C) II is the inorder sequence, but nothing more can be said about the other two sequences
(D) II and III are the preorder and inorder sequences, respectively

[D]

II and III have the same last element. Thus they must be either pre-order or in-order.

Thus, I must be post-order.

But then K must be the root.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 K occurs as the first element tin II. Thus, II must be pre-order.

Thus, III must be in-order.

49. Which of the following is TRUE?

(A) The cost of searching an AVL tree is  (log n) but that of a binary search tree is O(n)

(B) The cost of searching an AVL tree is  (log n) but that of a complete binary tree is  (n log n)

(C) The cost of searching a binary search tree is O(log n) but that of an AVL tree is  (n)

(D) The cost of searching an AVL tree is  (n log n) but that of a binary search tree is O(n)

[A]Searching in AVL tree has O(logn) complexity.

And searching for binary search tree is also O(n), when it is skewed and is order of O(log(n)) when it is complete

50. We have a binary heap on n elements and wish to insert n more elements (not necessarily one after another) into this heap. The

total time required for this is

(A) (log n)

(B) (n)

(C) (n log n)

(D) (n2)
[C]

For insertion of 1 node in heap will take O(log(n))

For insertion of n nodes will take O(nlog(n)).

51. You are given the postorder traversal, P , of a binary search tree on the n elements 1, 2,..., n. You have to determine the unique

binary search tree that has P as its postorder traversal. What is the time complexity of the most efficient algorithm for doing this?

(A) (log n)

(B) (n)

(C) (n log n)
(D) none of the above, as the tree cannot be uniquely determined.

[C] To get unique tree we must have pre order and in order or post order and inorder.

In order traversal of a BST is always sorted.

I=Sort P(using merge sort or heap sort which takes O(nlogn))

Using I and P construct the tree.

52. When searching for the key value 60 in a binary search tree, nodes containing the key values 10, 20, 40, 50, 70, 80, 90 are

traversed, not necessarily in the order given. How many different orders are possible in which these key values can occur on the

search path from the root node containing the value 60?

(A) 35 (B) 64 (C) 128 (D) 5040

53. Consider the process of inserting an element into a Max Heap, where the Max Heap is represented by an array. Suppose we

perform a binary search on the path from the new leaf to the root to find the position for the newly inserted element, the number of

comparisons performed is:

(A) Θ(log2 n)

(B) Θ(log2 log2 n)

(C) Θ(n)

(D) Θ(n log2 n)

[B]

n = no of elements in the tree.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 lgn = height of the tree i.e. path length of the newly inserted node to the root.

Complexity of binary search = O(lgn) where n is the no. of elements searched.

Thus, O(ln(lg(n)))

54. A complete n-ary tree is a tree in which each node has n children or no children. Let I be the number of internal nodes and L be the

number of leaves in a complete n-ary tree. if L = 41, and I = 10, what is the value of n?

(A) 3 (B) 4 (C) 5 (D) 6

L = I(n - 1) + 1

Thus n = (L - 1) / I – 1

i.e n = (41 - 1) / 10 -1

Ans: n = 3

55. The inorder and pre-order traversal of a binary tree are

d b e a f c g and a b d e c f g, respectively.

The post-order traversal of the binary tree is

(A) d e b f g c a

(B) e d b g f c a

(C) e d b f g c a
(D) d e f g b c a

[A]

(a) (b)

56. The maximum number of binary trees that can be formed with three unlabeled nodes is:

(A) 1 (B) 5 (C) 4 (D) 3

[B] Using formula (1/(n+1))* 2nCn , where n is the number of unlabeled node so 5

57. The height of a binary tree is the maximum number of edges in any root to leaf path. The maximum number of nodes in a binary

tree of height h is:

(A) 2h (B) 2h-1 - 1 (C) 2h+1 – 1 (D) 2h+1

Level 0: h = 0; nodes = 1

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 Level 1: h = 1; nodes = 2

Level 2: h = 2; nodes = 4

Level n: h = n; nodes = 2^n

Total no of nodes = 1 + 2 + 4 + … + 2^n = 2^(h+1) ‐1

58. Suppose that we have numbers between 1 and 100 in a binary search tree and want to search for the number 55. Which of the

following sequences CANNOT be the sequence of nodes examined?

(A) {10, 75, 64, 43, 60, 57, 55} (B) {90, 12, 68, 34, 62, 45, 55}

(C) {9, 85, 47, 68, 43, 57, 55} (D) {79, 14, 72, 56, 16, 53, 55}

[C] On arriving at node 47, we take the right sub-tree. The right sub-tree can contain only those nodes which are larger than 47. But

43 < 47

59. Which of the following sequences of array elements forms a heap?

(A) {23, 17, 14, 6, 13, 10, 1, 12, 7, 5} (B) {23, 17, 14, 6, 13, 10, 1, 5, 7, 12}

(C) {23, 17, 14, 7, 13, 10, 1, 5, 6, 12} (D) {23, 17, 14, 7, 13, 10, 1, 12, 5, 7}

[C] In a max heap parent node is always greater than its children. Only [C] satisfies this property

60. A scheme for sorting binary trees in an array X is as follows. Indexing of X starts at 1 instead of 0. The root is stored at X[1]. For a

node stored at X[i], the left child, if any is stored in X[2i] and the right child, if any, in X[2i + 1]. To be able to store any binary tree

on n vertices the minimum size of X should be

(A) log2 n (B) n (C) 2n + 1 (D) 2n – 1

[B] In a complete binary tree to store n nodes an array of size n is needed.

61. In a binary max heap containing n numbers, the smallest element can be found in time

(A) Ө(n) (B) Ө(log n) (C) Ө(log log n) (D) Ө(1)

[A]The smallest element can be found in last level of tree. So finding smallest we have to perform search in last level and that

search can be performed in O(n).So total complexity will be O(logn+n)= O(n).

62. A binary search tree contains the numbers 1, 2, 3, 4, 5, 6, 7, 8. When the tree is traversed in pre-order and the values in each node

printed out, the sequence of values obtained is 5, 3, 1, 2, 4, 6, 8, 7. If tree is traversed in post-order, the sequence obtained would be

(A) 8, 7, 6, 5, 4, 3, 2, 1

(B) 1, 2, 3, 4, 8, 7, 6, 5

(C) 2, 1, 4, 3, 6, 7, 8, 5

(D) 2, 1, 4, 3, 7, 8, 6, 5

[D]

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

(a) (b) (c)

63. In a binary tree, for every node the difference between the number of nodes in the left and right subtrees is at most 2. If the height

of the tree is h . 0, then the minimum number of nodes in the tree is

(A) 2h-1 (B) 2h-1 + 1 (C) 2h-1 – 1 (D) 2h

N= h+[1/2*[(h-2)*(h-3)]]

64. The numbers 1, 2, …, n are inserted in a binary search tree in some order. In the resulting tree, the right subtree of the root contains

p nodes. The first number to be inserted in the tree must be

(A) 134 (B) 133 (C) 124 (D) 123

1-----r ---- n

Where r is the value of the root.

No. of elements between n and r is n – r = p

r = n - p

65. In a complete k-ary tree, every internal node has exactly k children. The number of leaves in such a tree with n internal nodes is:

(A) nk

(B) (n-1)k +1

(C) n(k – 1) + 1

(D) n(k – 1)

[C]Degree of internal nodes (except root) = k + 1

Degree of root = k

Degree of leaf nodes = 1

Also,

No of edges = no. of nodes – 1

But total no of nodes = n + L (L = leaf nodes)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 Thus, no. of edges = n + L -1

From graph theory: sum of degree = 2 * (no. of edges)

Case 1: the tree has only 1 node.

Sum of degree = 2 * (no of edges) = 0

Case 2: The tree has more than one node.

(k + 1) * (n - 1) + k + L = n + L -1

Ans: L = n(k - 1) + 1

66. How many distinct binary search tree can be created out of 4 distinct keys?

(A) 5

(B) 14

(C) 24
(D) 42

1  2n 
[B] By formula  

(n  1)  n 
67. A Priority-Queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order traversal of the heap is given below:

10, 8, 5, 3, 2

Two new elements ‘1’ and ‘7’ are inserted in the heap in that order. The level-order traversal of the heap after the insertion of the

elements is:

(A) 10, 8, 7, 5, 3, 2, 1

(B) 10, 8, 7, 2, 3, 1, 5

(C) 10, 8, 7, 1, 2, 3, 5
(D) 10, 8, 7, 3, 2, 1, 5

[D]

(a) (b)

68. Which of the following binary trees has its inorder and preorder traversals as BCAD and ABCD, respectively?

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

(A)

A

B C

D

(B)

(C)

(D)

A

B D

C

[D] With inorder and preorder,a tree can be uniquely identified.

69. An array of integers of size n can be converted into a heap by adjusting the heaps rooted at each internal node of the complete

binary tree starting at the node (n  1) / 2 , and doing this adjustment upto the root node (root node is at index 0) in the order

(n  1) / 2 , (n  3) / 2, …, 0. The time required to construct a heap in this manner is

(A) O(log n)

(B) O(n)

(C) O(n log log n)
(D) O(n log n)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 [B] Refer Cormen for proof

70. A program takes as input a balance binary search tree with n leaf nodes and computes the value of a function g(x) for each node x.

if the cost of computing g(x) is min {no. of leaf nodes in left-subtree of x, no. of leaf-nodes in right-sub tree of x} then

the worst time case complexity of the program is

(A) Θ(n)

(B) Θ(n log n)

(C) Θ(n2)

(D) Θ(n2 log n)

[B] The recurrence relation for the recursive function is

T(N) = 2 * T(N/2) + n/2

Where N is the total no. of nodes in the tree.

T(N) = 2 * (2*T(N/2) + n/2) + n/2

= 4 * T(N/2) + 3(n/2)

Solve this till T(1) i.e. till we reach the root.

T(N) = c * T(N / 2^i) + (2*i - 1) * (n/2)

Where i = lg(N)

= lg((2n - 1) / 2)

O(c * T(N / 2^i) + (2*i - 1) * (n/2)) reduces to

O((2*i - 1) * (n/2))

O((2*(lg((2n - 1) / 2)) - 1) * (n/2)) …….sub the value of i.

O(n * ln(n))

71. Consider the following C program segment

struct CellNode{

struct CellNode *leftChild;

int element;.

struct CellNode *rightChild;

};

int Dosomething(struct CellNode *ptr)

{

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 int value = 0;

if(ptr != NULL)

{ if(ptr -> leftChild != NULL)

value = 1 + DoSomething (ptr -> leftChild);

if(ptr -> rightChild != NULL)

value = max(value, 1 + DoSomething (ptr -> rightChild);

}

}

The value returned by the function DoSomething when a pointer to the root of a non-empty tree is passed as argument is

(A) The number of leaf nodes in the tree

(B) The number of nodes in the tree

(C) The number of internal nodes in the tree

(D) The height of the tree

[D]Assuming that the function returns ‘value’.The leaf nodes return 0. Each internal node adds 1 to the maximum returned value.

72. The elements 32, 15, 20, 30, 12, 25, 16 are inserted one by one in the given order into a maxheap. The resultant max heap is

[A]

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 (a) (b) (c)

(d) (e)

73. Consider the label sequences obtained by the following pairs of traversals on a labeled binary tree. Which of these pairs identify a

tree uniquely?

(i) Pre-order and post-order

(ii) Inorder and post-order

(iii) Pre-order and inorder

(iv) Level order and post-order

(A) (i)only

(B) (i), (iii)

(C) (iii)only

(D) (iv)only

(ii) and (iii)
here [C] is also correct

74. Level order traversal of a rooted tree can be done by starting the root and performing

(A) Pre-order traversal

(B) Inorder traversal

(C) Depth first search
(D) Breadth first search

[D] A breath first search is implemented by enqueueing the root and the repeating the following-

Step: dequeue a node and push its children in the queue from the left to right.

This will give a level-order traversal of the tree.

75. The following numbers are inserted into an empty binary search tree in the given order: 10, 1, 3, 15, 12, 16. What is the height of

the binary search tree (the height is the maximum distance of a leaf node from the root)?

(A) 2

(B) 3

(C) 4

(D) 6
[A]

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

ADVANTAGES:

• B-trees are suitable for representing huge tables residing in secondary

memory because:

1. With a large branching factor m, the height of a B-tree is low

resulting in fewer disk accesses.

2. The branching factor can be chosen such that a node corresponds

to a block of secondary memory.

3. The most common data structure used for database indices is the B-

tree. An index is any data structure that takes as input a property

(e.g. a value for a specific field), called the search key, and quickly

finds all records with that property.

Note: As m increases the amount of computation at each node increases;

however this cost is negligible compared to hard-drive accesses.

http://www.padeepz.net/
http://www.padeepz.net/

www
a
.
d
p
jac
a
en
d
t t
e
o
e
‘w
p
’
z.net

Unit IV: Graphs: DEFINITION-REPRESENTATION OF GRAPH-TwYPwESwO.Fpadeepz.net
GRAPH-BREADTH FIRST TRACERSAL-EPTH FIRST TRAVERSAL -TOPOLOGICAL
SORT-BI-CONNECTIVITY-CUT VERTEX-EUCLER CIRCUITS-APPLICATIONS OF HEAP.

Graph: - A graph is data structure that consists of following two components.

 A finite set of vertices also called as nodes.

 A finite set of ordered pair of the form (u, v) called as edge.

(or)

A graph G=(V, E) is a collection of two sets V and E, where

V Finite number of vertices

E Finite number of Edges,

Edge is a pair (v, w), where v, w ∈ V.

Application of graphs:

 Coloring of MAPS

 Representing network

o Paths in a city

o Telephone network o

Electrical circuits etc.

 It is also using in social network

including o LinkedIn

o Facebook

Types of Graphs:

 Directed graph

 Undirected Graph

Directed Graph:

In representing of graph there is a directions are

shown on the edges then that graph is called

Directed graph.

That is,

A graph G=(V, E) is a directed graph ,Edge is a

pair (v, w), where v, w ∈ V, and the pair is ordered.
Means vertex ‘w’ is adjacent to v.

Directed graph is also called digraph.

Undirected Graph:

In graph vertices are not ordered is called undirected

graph. Means in which (graph) there is no direction

(arrow head) on any line (edge).

A graph G=(V, E) is a directed graph ,Edge is a pair

(v, w), where v, w ∈ V, and the pair is not ordered.
Means vertex ‘w’ is adjacent to ‘v’, and vertex ‘v’ is

www.padeepz.net

Note: in graph there is another component

called weight/ cost.

Weight graph:

Edge may be weight to show that there is

a cost to go from one vertex to another.

Example: In graph of roads (edges) that

connect one city to another (vertices), the

weight on the edge might represent the

distance between the two cities (vertices).

www.padeepz.net

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Path

Loops

Root Node

Parent

Child

relationship

Complexity

Types of

Traversal

Connection

Rules

DAG

Different

Types

Applications

No. of edges

Tree is special form of graph i.e. minimally

connected graph and having only one path
between any two vertices.

Tree is a special case of graph having
no loops, no circuits and no self-loops.

In tree there is exactly one root node and
every child have only one parent.

In trees, there is parent child relationship so
flow can be there with direction top to
bottom or vice versa.

Trees are less complex then graphs as having
no cycles, no self-loops and still connected.

Tree traversal is a kind of special case of
traversal of graph. Tree is traversed in Pre-

Order, In-Order and Post-Order(all three
in DFS or in BFS algorithm)

In trees, there are many rules / restrictions
for making connections between nodes
through edges.

Trees come in the category of DAG :

Directed Acyclic Graphs is a kind of
directed graph that have no cycles.

Different types of trees are : Binary Tree ,

Binary Search Tree, AVL tree, Heaps.

Tree applications: sorting and searching like

Tree Traversal & Binary Search.

Tree always has n-1 edges.

In graph there can be more than
one path i.e. graph can have uni-
directional or bi-directional paths
(edges) between nodes

Graph can have loops, circuits as
well as can have self-loops.

In graph there is no such concept
of root node.

In Graph there is no such parent

child relationship.

Graphs are more complex in
compare to trees as it can have
cycles, loops etc

Graph is traversed by

DFS: Depth First Search

BFS : Breadth First Search

algorithm

In graphs no such rules/

restrictions are there for

connecting the nodes through
edges.

Graph can be Cyclic or Acyclic.

There are mainly two types of
Graphs :Directed and Undirected
graphs.

Graph applications : Coloring of
maps, in OR (PERT & CPM),
algorithms, Graph coloring, job
scheduling, etc.

In Graph, no. of edges depends on
the graph.

Model

Figure

Tree is a hierarchical model. Graph is a network model.

Difference between Trees and Graphs

Trees Graphs

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Other types of graphs:

Complete Graph:

A complete graph is a simple undirected graph in which every pair of distinct vertices is

connected by a unique edge.

OR

If an undirected graph of n vertices consists of n(n-1)/2 number of edges then the graph is

called complete graph.

Example:

vertices Edges Complete graph vertices Edges Complete graph

n=2 1 n=6 15

n=3 3 n=7 21

n=4 6 n=5 10

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Sub graph:

A sub-graph G' of graph G is a graph, such that the set of vertices and set of edges

of G' are proper subset of the set of vertices and set of edges of graph G

respectively.

Connected Graph:

A graph which is connected in the sense of a topological space (study of shapes), i.e., there is

a path from any point to any other point in the graph. A graph that is not connected is said to

be disconnected.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Path:

A path in a graph is a finite or infinite sequence of edges which connect a sequence of

vertices. Means a path form one vertices to another vertices in a graph is represented by

collection of all vertices (including source and destination) between those two vertices.

Cycle: A path that begins and ends at the same vertex.

Simple Cycle: a cycle that does not pass through other vertices more than once

Degree:

The degree of a graph vertex v of a graph G is the number of graph edges which touch v. The

vertex degree is also called the local degree or valency. Or

The degree (or valence) of a vertex is the number of edge ends at that vertex.

For example, in this graph all of the vertices have degree three.

In a digraph (directed graph) the degree is usually divided into the in-degree and the out-

degree

 In-degree: The in-degree of a vertex v is the number of edges with v as their terminal

vertex.

 Out-degree: The out-degree of a vertex v is the number of edges with v as their initial

vertex.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

TOPOLOGICAL SORT

A topological sort is a linear ordering of vertices in a Directed Acyclic Graph

such that if there is a path from Vi to Vp, then Vj appears after Vi in the linear

ordering.Topological sort is not possible if the graph has a cycle.

INTRODUCTION

In graph theory, a topological sort or topological ordering of a directed
acyclic graph (DAG) is a linear ordering of its nodes in which each node
comes before all nodes to which it has outbound edges.
Every DAG has one or more topological sorts.
More formally, define the partial order relation R over the nodes of the
DAG such that xRy if and only if there is a directed path from x to y.
Then, a topological sort is a linear extension of this partial order, that is,
a total order compatible with the partial order.

PROCEDURE

Step – 1 : Find the indegree for every vertex.

Step – 2 : Place the vertice whose indegree is 0, on the empty queue.

Step – 3 : Dequeue the vertex V and decrement the indegrees of all its adjacent

vertices.

Step – 4 : Enqueue the vertex on the queue if its indegree falls to zero.

Step – 5 : Repeat from Step -3 until the queue becomes empty.

The topological ordering is the order in which the vertices dequeue.

Vertices Indegree
1 0
2 0

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

GRAPH TRAVERSAL

Graph traversal is the Visiting all the nodes of a graph.

The traversals are :

1. DFS (Depth First Search)

2. BFS (Breadth First Search)

BREADTH FIRST SEARCH

The Breadth first search was one of the systematic approaches for
exploring and searching the vertices/nodes in a given graph. The
approach is called "breadth-first" because from each vertex ‘v’ that we
visit, we search as broadly as possible by next visiting all the vertices
adjacent to v.
It can also be used to find out whether a node is reachable from a given
node or not.
It is applicable to both directed and undirected graphs.
Queue is used in the implementation of the breadth first search.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

ALGORITHM

Procedure bfs()
{

//BFS uses Queue data structure
Queue q=new LinkedList();
q.add(this.rootNode);
printNode(this.rootNode);
rootNode.visited=true;
while(!q.isEmpty())
{

Node n=(Node)q.remove(); Node child=null;
while((child=getUnvisitedChildNode(n))!=null)
{

child.visited=true;
printNode(child);
q.add(child);

}
}
//Clear visited property of nodes
clearNodes();

}

Procedure

Step -1 Select the start vertex/source vertex. Visit the vertex and mark it

as one (1) (1 represents visited vertex).

Step -2 Enqueue the vertex.

Step -3 Dequeue the vertex.

Step -4 Find the Adjacent vertices.

Step -5 Visit the unvisited adjacent vertices and mark the distance as 1.

Step -6 Enqueue the adjacent vertices.

Step -7 Repeat from Step – 3 to Step – 5 until the queue becomes empty.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

C D

Vertices Visited
Vertices

C 1
A 0 1

B 0 1

D 0 1

E 0 1

Enqueue C
E

A B D

Dequeue C
E

A B D

A B

C D

E

Ex : A B

Pseudo Code :

void BFS(Vertex S)

{

Vertex v,w;

Queue Q;

visited[s] = 1; enqueue(S,Q);

while(!IsEmpty(a))

{

Vertices Visited
Vertices

A 1
B 0 1

C 0 1

D 0 1

Enqueue A B C D
Dequeue A B C D

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

v = Dequeue(Q);

print(v);

for each adjacent vertices w to v

if(visited[w]==0)

{

visited[w] = 1;

Enqueue(w,Q);

}

}

}

APPLICATIONS

Breadth-first search can be used to solve many problems in graph theory, for
example.

Finding all nodes within one connected component
Copying Collection, Cheney's algorithm
Finding the shortest path between two nodes u and v (in an unweighted
graph)
Finding the shortest path between two nodes u and v (in a weighted
graph: see talk page)
Testing a graph for bipartiteness
(Reverse) Cuthill–McKee mesh numbering
Testing whether graph is connected.
Computing a spanning forest of graph.
Computing, for every vertex in graph, a path with the minimum number
of edges between start vertex and current vertex or reporting that no
such path exists.
Computing a cycle in graph or reporting that no such cycle exists.

Uses

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Testing whether graph is connected.
Computing a spanning forest of graph.
Computing, for every vertex in graph, a path with the minimum number
of edges between start vertex and current vertex or reporting that no
such path exists.
Computing a cycle in graph or reporting that no such cycle exists.

DEPTH FIRST SEARCH

Depth first search works by taking a node, checking its neighbors,
expanding the first node it finds among the neighbors, checking if that
expanded node is our destination, and if not, continue exploring more
nodes.
In depth-first search, edges are explored out of the most recently
discovered vertex v that still has unexplored edges leaving it.
When all of v' s edges have been explored, the search "backtracks" to
explore edges leaving the vertex from which v was discovered.
This process continues until we have discovered all the vertices that are
reachable from the original source vertex.
If any undiscovered vertices remain, then one of them is selected as a
new source and the search is repeated from that source.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

This entire process is repeated until all vertices are discovered.
Stack is used in the implementation of the depth first search.

In DFS, the basic data structures for storing the adjacent nodes is stack.

Procedure:

Step -1 Select the start vertex.

Step -2 Visit the vertex.

Step -3 Push the vertex on to the stack.

Step -4 Pop the vertex.

Step -5 Find the adjacent vertices, and select any 1 of them.

Step -6 Repeat from Step – 4 to Step – 5 until the stack becomes empty.

A D C B

Stack O/P

A

D

C

B

Stack o/p A B D C

A B

C D

A B

C D

Vertices Visited
Vertices

A 1
B 0 1
C 0 1
D 0 1

Vertices Visited
Vertices

A 1
B 0 1
C 0 1
D 0 1

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Pseudo Code:

void DFS(Vertex S)

{

int top = 0;

Stack C; vertex v,w;

visited [S] = 1

C[top] = S;

while(!IsEmpty(C))

{

v = pop(C);

print(V);

for each unknown adjacent vertices of V,

{

if(visited[w] == 0)

{

visited[w] = 1;

push(w,C);

}

}

}

}

(OR)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

void DFS(vertex V)

{

visited[v] = 1;

push(v);

pop(v);

for each w adjacent to V

if(!visited[w])

Dfs(w);

}

ALGORITHM

Procedure dfs()
{

//DFS uses Stack data structure
Stack s=new Stack();
s.push(this.rootNode);
rootNode.visited=true;
printNode(rootNode);
while(!s.isEmpty())
{

Node n=(Node)s.peek();
Node child=getUnvisitedChildNode(n);
if(child!=null)
{

}
else
{

child.visited=true;
printNode(child);
s.push(child);

s.pop();

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

A

B D E

C

A

B

C

D

E

A

B

C

D

G

C

B

A

}
}
//Clear visited property of nodes
clearNodes();

}

Applications of DFS :

1. To check whether the undirected graph is connected or not.

2. To check if the connected undirected graph is bi – connected or not.

3. To check whether the directed graph is acyclic or not.

I. Undirected Graph :

An undirected graph is connected if and only if a depth first search

starting from any node visits every node.

1. Tree Edge

2. Back Edge ----------- >

B A

C D

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

E

A (1,1)

B (2,1)

C G

C D

F

G E

F D

II. Bi-Connectivity :

The vertices which are responsible for disconnection is called as

Articulation points.

If in a connected undirected graph, the removal of any node does not

affect the connectivities, then the graph is said to be biconnected graph.

1. Num

2. Low

Calculation of Num and Low gives the articulation point.

(3,1) (7,7)

A

F

E

G

B A

C D

B

Low(w) ≥ Num(v)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

E E

F

F D (4,1)

(5,4)

(6,4)

BICONNECTIVITY :

A connected undirected graph is biconnective if there are no vertices

whose removal disconnects the rest of the graph.

A biconnected undirected graph is a connected graph that is not broken
into disconnected pieces by deleting any single vertex (and its incident
edges).
A biconnected directed graph is one such that for any two vertices v and
w there are two directed paths from v to w which have no vertices in
common other than v and w.
If a is not bio-connected,the vertices whose removal would disconnect
the graph is called articulation points.

DEFINITION

Equivalent definitions of a biconnected graph G:

Graph G has no separation edges and no separation vertices
For any two vertices u and v of G, there are two disjoint simple paths
between u and v (i.e., two simple paths between u and v that share no
other vertices or edges)
For any two vertices u and v of G, there is a simple cycle

containing u and v.

Biconnected Components

Biconnected component of a graph G are:

A maximal biconnected subgraph of G, or
A subgraph consisting of a separation edge of G and its end vertices

G

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Interaction of biconnected components

An edge belongs to exactly one biconnected component
A nonseparation vertex belongs to exactly one biconnected component
A separation vertex belongs to two or more biconnected components

Articulation Point :

The vertices whose removal disconnects the graph are known as

Articulation Points.

Steps to find Articulation Points :

(i) Perform DFS, starting at any vertex.

(ii) Number the vertex as they are visited as Num(V).

(iii) Compute the lowest numbered vertex for every vertex V in the DFS

tree, which we call as low(W), that is reachable from V by taking one

or more tree edges and then possible one back edge by definition.

Low(V) = min(Num(V), Num(W), Low(W))

The Lowest Num(W) among all back edges V, W.

The Lowest Low(W) among all the tree edges V, W.

The root is an articulation if and only if (iff) it has more than two children.

Any vertex V other than the root is an Articulation point iff V has some child W

such that Low(W)≥Num (V)

(1,1) A

B (2,1)

C (3,1)

D (4,1) G (7,7)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

E

F (6,4)

B E H I

(5,4)

Low(F) = min(Num(V), Num(W), Low(W))

= min(6, 4, -1)

= 4

Low(E) = min(5, 6, 4)

= 4

Low(D) = min(4, 1, 4)

= 1

Low(G) = min(7, -, -)

= 7

Low(C) = min(3, (4,7), (1,7))

= 1

Low(B) = min(2, 3, 1)

= 1

Low(A) = min(1, 2, 1)

= 1

Example 2

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

B

C

A F

D G E

H

J

K

I

G

Visited Parent[]
1 2 3 4

A B C D 0 1 2 3

Num[]

(1,1)

I K A C F

D

A

B (2,1)

C (3,1)

A

B C

D

1 1 1 1

1 1 1 1

1 1 1 1

0 1 2 3

A

B

C

D

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

D (4,4)

ALGORITHM

Routine to assign Num to Vertices

void AssignNum(Vertex V)
{
Vertex W;
int counter = 0;
Num[V] = ++counter;
visited[V] = True;
for each W adjacent to V
if(!visited[W])
{
parent[W] = V;
AssignNum(W);
}
}

Routine to compute low and to test for points

void AssignLow(Vertex V)
{
Vertex W;
Low[V] = Num[V]; /* Rule 1 */
for each W adjacent to V
{
if(Num[W] > Num[V]) /* forward edge or free edge */
{ AssignLow(W)
if(low[W] >= Num[V])
printf(“%v Articulation point is”, V);
Low[V] = min(Low[V], Low[W]); /* Rule 3 */
}
else
{
if(parent[V]! = W) /* Back edge */
Low[V] = min(Low[V], Num[W]); /* Rule 2 */

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

}
}
}

APPLICATION

Bio-Connectivity is a application of depth first search.
Used mainly in network concepts.

BICONNECTIVITY ADVANTAGES

Total time to perform traversal is minimum.
Adjacency lists are used
Traversal is given by O(E+V).

DISADVANTAGES

Have to be careful to avoid cycles
Vertices should be carefully removed as it affects the rest of the graph.

EULER CIRCUIT

EULERIAN PATH

An Eulerian path in an undirected graph is a path that uses each edge
exactly once. If such a path exists, the graph is called traversable or semi-
eulerian.

EULERIAN CIRCUIT

An Eulerian circuit or Euler tour in an undirected graph is a cycle that
uses each edge exactly once. If such a cycle exists, the graph is called

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Unicursal. While such graphs are Eulerian graphs, not every Eulerian graph
possesses an Eulerian cycle.

EULER'S THEOREM

Euler's theorem 1

If a graph has any vertex of odd degree then it cannot have an Euler
circuit.
If a graph is connected and every vertex is of even degree, then it at least
has one Euler circuit.

Euler's theorem 2

If a graph has more than two vertices of odd degree then it cannot have
an Euler path.
If a graph is connected and has just two vertices of odd degree, then it at
least has one Euler path. Any such path must start at one of the odd-
vertices and end at the other odd vertex.

ALGORITHM

Fleury's Algorithm for finding an Euler Circuit

1. Check to make sure that the graph is connected and all vertices are of
even degree

2. Start at any vertex
3. Travel through an edge:

o If it is not a bridge for the untraveled part, or
o there is no other alternative

4. Label the edges in the order in which you travel them.
5. When you cannot travel any more, stop.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Fleury's Algorithm

1. pick any vertex to start .
2. from that vertex pick an edge to traverse .
3. darken that edge, as a reminder that you can't traverse it again .
4. travel that edge, coming to the next vertex .
5. repeat 2-4 until all edges have been traversed, and you are back at the

starting vertex .

At each stage of the algorithm:

the original graph minus the darkened (already used) edges = reduced
graph
important rule: never cross a bridge of the reduced graph unless there is
no other choice

Note:

the same algorithm works for Euler paths
before starting, use Euler’s theorems to check that the graph has an
Euler path and/or circuit to find.

APPLICATION

Eulerian paths are being used in bioinformatics to reconstruct the DNA
SEQUENCE from its fragments.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

V2 V3

V1 V4 V5 V6 V10

V7 V8 V9

IMPORTANT SUMS

1. Topological Sort

Sorted Vertices :

V1 V2 V4 V3 V5 V10 V6 V9 V8 V7

Vertices Indegree
V1 0
V2 1 0

V3 1 0 0

V4 1 0

V5 1 0

V6 2 1 0

V7 2
0

 1

V8 1 0
V9 1 0
V10 1 0

Enqueue V1 V2 V4 V3 V5 V10 V6

V9 V8 V7

Dequeue V1 V2 V4 V3 V5 V10 V6

V9 V8 V7

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

b c

5. Write the pseudo code for Sorting algorithms

Pseudo Code for Topological Sort :

void Topsort(Graph G)

{

Queue Q;

vertex v,w; int counter = 0;

Q = Create Queue (Num Vertex);

Make Empty(Q);

for each vertex V

if (Indegree[V]==0)

enqueue(V,Q);

while(!Isempty(Q))

{

V = Dequeue(Q);

Topnum[V]=++Counter;

for each w adjacent to V

2

a d

6
6

4

f e

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

if(--Indegree[w]==0)

Enqueue(w,0);

}

if(counter!=Num Vertex)

Error(“Graph has a cycle”);

Dispose Queue(Q);

}

Pseudo Code to Perform Unweighted Sort :

void unweighted(Table T)

{

Queue Q;

Vertex v,w;

Q = Create Queue(Num Vertex);

Make Empty(Q);

while(!IsEmpty(Q))

{

V = Dequeue(o);

T[V].Known = True;

for each w adjacent to v

if(!T[w].Known)

{

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net Graphs

www.padeepz.net 5

P4 P3

gate
questi
ons

1. (a) How many binary relations are there on a set A with n elements?

(b) How many one-to-one functions are there from a set A with n elements onto itself?

(c) Show that the number of odd degree vertex in a finite graph is even.

(d) Specify an adjacency-lists representation of the undirected graph.

2. Answer the following question briefly.

(i) If the transportation problem is solved using some version of the simplex algorithm, under what conditions will the solution always have integer

values?

3. Write the adjacency matrix representation of the graph given in fig below:

P1

P5 P2

4. In the graph shown below, the depth-first spanning tree edges are marked with ‘T’. Identify the forward, backward and cross edges.

5. The maximum number of possible edges in an undirected graph with n vertices and k components is .

6. Show that all vertices in an undirected finite graph cannot have distinct degrees, if the graph has at least two vertices

7. Maximum number of edges in a planner graph with n vertices is .

8. Consider a simple connected graph G with n vertices and n edges (n>2). Then which of the following statements are true

(a) G has no cycles

(b) the graph obtained by removing any edges from G is not consider connected

(c) G has at least one cycle

(d) the graph obtained by removing any two edges from G is not consider connected

(e) none of the above.

9. Consider the following graph:

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 6

Which one of the following is NOT the sequence of edges added to the minimum spanning tree using Kruskal’s algorithm?

(A) (b, e) (e, f) (a, c) (b, c) (f, g) (c, d)

(B) (b, e) (e, f) (a, c) (f, g) (b, c) (c, d)

(C) (b, e) (a, c) (e, f) (b, c) (f, g) (c, d)

(D) (b, e) (e, f) (b, c) (a, c) (f, g) (c, d)

10. Which one of the following is TRUE for any simple connected undirected graph with more that 2 vertices?

(A) No two vertices have the same degree.
(B) At least two vertices have the same degree.

(C) At least three vertices have the same degree.
(D) All vertices have the same degree.

11. Consider the following sequences of nodes for the undirected graph given below.

I. a b e f d g c
II. a b e f c g d
III. a d g e b c f
IV. a d b c g e f

A Depth First Search (DFS) is started at node a. The nodes are listed in the order they are first visited. Which all of the above is (are) possible

output(s)?

(A) I and III only

(B) II and III only
(C) II, III and IV only
(D) I, II and III only

12. For the undirected, weighted graph given below, which of the following sequences of edges represents a correct execution of Prim’s algorithm to

construct a Minimum Spanning Tree?

(D) (a, b), (d, f), (f, c), (g, i), (d, a), (g, h), (c, e), (f, h)
(E) (c, e), (c, f), (f, d), (d, a), (a, b), (g, h), (h, f), (g, i)
(F) (d, f), (f, c), (d, a), (a, b), (c, e), (f, h), (g, h), (g, i)
(G) (h, g), (g, i), (h, f), (f, c), (f, d), (d, a), (a, b), (c, e)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 7

e

2
1 1

h f

2 3

g

M N O

R Q P

13. G is a simple undirected graph. Some vertices of G are of odd degree. Add a node v to G and make it adjacent to each odd degree vertex

of G . The resultant graph is sure to be

(A) regular
(B) complete
(C) Hamiltonian
(D) Euler

14. What is the chromatic number of the following graph?

(A) 2
(B) 3
(C) 4
(D) 5

15.

b -3

2
1

a c -5

2
3

d 2

Dijkstra’s single source shortest path algorithm when run from vertex a in the above graph, computes the correct shortest path distance to

(A) only vertex a

(B) only vertices a, e, f , g, h

(C) only vertices a, b, c, d

(D) all the vertices

16. G is a graph on n vertices and 2n  2 edges. The edges of G can be partitioned into two edge‐disjoint spanning trees. Which of the following is

NOT true for G?

(A) For every subset of k vertices, the induced subgraph has at most 2k  2 edges

(B) The minimum cut in G has at least two edges
(C) There are two edge‐disjoint paths between every pair of vertices
(D) There are two vertex‐disjoint paths between every pair of vertices

17. Which of the following statements is true for every planar graph on n vertices?

(A) The graph is connected
(B) The graph is Eulerian

(C) The graph has a vertex‐cover of size at most 3n/4
(D) The graph has an independent set of size at least n/3

18. The Breadth First Search algorithm has been implemented using the queue data structure. One possible order of visiting the nodes of the

following graph is

(A) MNOPQR

(B) NQMPOR

(C) QMNPRO

(D) QMNPOR

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 8

19. The most efficient algorithm for finding the number of connected components in an undirected graph on n vertices and m edges has time

complexity

(A)  (n)

(B)  (m)

(C)  (m + n)

(D)  (mn)

20. What is the largest m such that every simple connected graph with n vertices and n edges contains at least m different spanning trees?

(A) 1 (B) 2 (C) 3 (D) n

21. Consider the DAG with V = {1, 2, 3, 4, 5, 6}, shown below.

Which one the following is NOT a topological ordering?

(A) 1 2 3 4 5 6 (B) 1 3 2 4 5 6

(C) 1 3 2 4 6 5 (D) 3 2 4 1 6 5

22. Let G be the non‐planar graph with the minimum possible number of edges. Then G has

(A) 9 edges and 5 vertices
(B) 9 edges and 6 vertices
(C) 10 edges and 5 vertices
(D) 10 edges and 6 vertices

23. Consider the depth first search of an undirected graph with 3 vertices P, Q and R. Let discovery time d(u) represent the time instant when the

vertex u is first visited, and finis time f(u) represent the time instant when the vertex u is last visited. Given that

d(P) = 5 units f(P) = 12 units

d(Q) = 6 units f(Q) = 10 units

d(R) = 14 units f(R) = 18 units

Which of the following statements is TRUE about the graph?

(A) There is only one connected component
(B) There are connected components, and P and R are connected
(C) There are connected components, and Q and R are connected
(D) There are connected components, and P and Q are connected

24. Which of the following is the correct decomposition of the directed graph given below into its strongly connected components?

(A) {P, Q, R, S}, {T}, {U}, {V} (B) {P, Q, R, S, T, V}, {U}

(C) {P, Q, S, T, V}, {R}, {U} (D) {P, Q, R, S, T, U, V}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 9

25. Consider the undirected graph G defined as follows. The vertices of G are bit strings of length n. we have an edge between vertex u and vertex v if

and only if u and v differ in exactly one bit position (in other words, v can be obtained from u by flipping a single bit). The ratio of the chromatic

number of G to the diameter of G is

(A) 1/2n‐1 (B) 1/n (C) 2/n (D) 3/n

26. If all the edge weights of an undirected graph are positive, then any subset of edges that connects all the vertices and has minimum total weight is

a

(A) Hamiltonian cycle (B) grid (C) hypercube (D) tree

27. In a binary tree, the number of internal nodes of degree 1 is 5, and the number of internal nodes of degree 2 is 10. The number of leaf nodes in the

binary tree is

(A) 10 (B) 11 (C) 12(D) 15

28. The 2n vertices of a graph G corresponds to all subsets of size n, for n ≥ 6. Two vertices of G are adjacent if and only if the corresponding sets

intersect in exactly two elements.

The number of connected components in G is

(A) 2 (B) n +2 (C) 2n/2 (D)
2

n

The maximum degree of a vertex in G is

 n / 2





 n / 2

 n ‐ 2

 n‐3

 n‐1

(A)  2

 2 
(B) 2 (C) 2 x 3 (D) 2

The number of vertices of degree zero in G is

(A) 1 (B) n (C) n + 1 (D) 2n

29. Let T be a depth first search tree in an undirected graph G. Vertices u and v are leaves of this tree T. The degrees of both u and v in G are at least 2.

Which one of the following statements is true?

(A) There must exist a vertex w adjacent to both u and v in G
(B) There must exist a vertex w whose removal disconnects u and v in G
(C) There must exist a cycle in G containing u and v

(D) There must exist a cycle in G containing u and v and all its neighbours in G

30. Consider the following graph

Which one of the following cannot be the sequence of edges added, in that order, to a minimum spanning tree using Kruskal’s algorithm?

(A) (a-b), (d-f), (b-f), (d-c), (d-e) (B) (a-b), (d-f), (d-c), (b-f), (d-e)

n

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 10

(C) (d-f), (a-b), (d-c), (b-f), (d-e) (D) (d-f), (a-b), (b-f), (d-e), (d-c)

31. To implement Dijkstra’s shortest path algorithm on undirected graphs so that it runs in linear time, the data structure to be used is

(A) Queue (B) Stack (C) Heap (D) B – Tree

32. Consider weighted complete graph G on the vertex set {v1, v2, …, vn} such that the weight of the edge (vi, vj) is 2 i  j . The weight of a minimum

spanning tree of G is

 n 
(A) n – 1 (B) 2n – 2 (C)   (D) n2

 2





33. Let G be a directed graph whose vertex set is the set of number from 1 to 100. There is an edge from a vertex i to a vertex j iff either j = i + 1 or j =

3i. the minimum number of edges in a path in G from vertex 1 to 100 is

(A) 4 (B) 7 (C) 23 (D) 99

34. Let G be a weighted undirected graph and e be an edge with maximum weight in G. Suppose there is minimum weight spanning tree in G

containing edge e. which of the following statements is always true?

(A) There exists a cutest in G having all edges of maximum weight.
(B) There exists a cycle in G having all edges of maximum weight.
(C) Edge e can be contained in a cycle.
(D) All edges in G have same weight.

35. In the following table, the left column contains the names of standard graph algorithms and the ight column contains the time complexities of the

algorithms. Match each algorithm with its time complexity.

1: Bellman‐Ford algorithm A: O(m log n)

2: Kruskal’s algorithm B: O(n3)

3: Floyd‐Warshall algorithm C: O(nm)

4: Topological sorting D: O(n + m)

(A) 1→ C, 2→ A, 3→ B, 4→ D
(B) 1→ B, 2→ D, 3→ C, 4→ A
(C) 1→ C, 2→ D, 3→ A, 4→ B

(D) 1→ B, 2→ A, 3→ C, 4→ D

36. In depth first traversal of a graph G with n vertices, k edges are marked as tree edges. The number of connected components in G is

(A) k (B) k + 1 (C) n – k – 1 (D) n – k

37. Statement for Linked Answer Questions 82a & 82b:

Let s and t be two vertices in a undirected graph G = (V, E) having distinct positive edge weights. Let [X, Y] be partition of V such that s Є X and t Є

Y. Consider the edge e having the minimum weight amongst all those edges that have one vertex in X and one vertex in Y.

(a) The edge e must definitely belong to:

(A) The minimum weighted spanning tree of G
(B) The weighted shortest path from s to t
(C) Each path from s to t
(D) The weighted longest path from s to t

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 11

(b) Let the weight of an edge e denote the congestion on that edge. the congestion on a path is defined to be the maximum of the

congestions on the edges of the path. We wish to find the path from s to t having minimum congestion. Which of the following paths is

always such a path of minimum congestion?

(A) A path from s to t in the minimum weighted spanning tree
(B) A weighted shortest path from s to t
(C) An Euler walk from s to t
(D) A Hamiltonian path from s to t

38. Postorder traversal of a given binary search tree, T produces the following sequence of keys

10, 9, 23, 22, 27, 25, 15, 50, 95, 60, 40, 29

Which one of the following sequences of keys can be the result of an inorder traversal of tree T?

(A) 9, 10, 15, 22, 23, 25, 27, 29, 40, 50, 60, 95
(B) 9, 10, 15, 22, 40, 50, 60, 95, 23, 25, 27, 29
(C) 29, 15, 9, 10, 25, 22, 23, 27, 40, 60, 50, 95
(D) 95, 50, 60, 40, 27, 23, 22, 25, 10, 9, 15, 29

39. Let G be a simple connected graph with 13 vertices and 19 edges. Then, the number of faces in the planar embedding of the graph is:

(A) 6
(B) 8
(C) 9

(D) 13

40. An undirected graph G has n nodes. its adjacency matrix is given by an n × n square matrix whose (i) diagonal elements are 0’s and (ii) non‐

diagonal elements are 1’s. Which one of the following is TRUE?

(A) Graph G has no minimum spanning tree (MST)
(B) Graph G has a unique MST of cost n‐1

(C) Graph G has multiple distinct MSTs, each of cost n‐1
(D) Graph G has multiple minimum spanning trees of different costs.

41. Consider the undirected graph below.

Using Prim’s algorithm to construct a minimum spanning tree starting with node A, which one of the following sequences of edges represents a

possible order in which the edges would be added to construct the minimum spanning tree?

(A) (E, G), (C, F), (F, G), (A, D), (A, B), (A, C)
(B) (A, D), (A, B), (A, C), (C, F), (G, E), (F, G)

(C) (A, B), (A, D), (D, F), (F, G), (G, E), (F, C)
(D) (A, D), (A, B), (D, F), (F, C), (F, G), (G, E)

42. What is the number of vertices in an undirected connected graph with 27 edges, 6 vertices of degree 2, 3 vertices of degree 4 and remaining of

degree 3?

(A) 10
(B) 11
(C) 18
(D) 19

43. What is the number of edges in an acyclic undirected graph with n vertices?

(A) n – 1

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 12

(B) n
(C) n + 1

(D) 2n – 2

44. Let G1 = (V, E1) and G2 = (V, E2) be connected graphs on the same vertex set V with more than two vertices. If G1 G2 = (V, E1 E2) is not a

connected graph, then the graph G1 U G2 = (V, E1 U E2)

(A) Cannot have a cut vertex
(B) Must have a cycle
(C) Must have a cut‐edge (bridge)
(D) Has chromatic number strictly greater than those of G1 and G2

45. How many graphs on n labeled vertices exist which have at least (n2 – 3n)/2) edges?

(A)

(n ̂ 2n) / 2

(n^ 23n) / 2

(n ̂ 23n) / 2

(B)  (n ̂ 2n)C
k

k 0

(C) (n^ 2n) / 2

n

n

(D)  (n^ 2n) / 2C
k

k 0

46. The minimum number of colours required to colour the following graph, such that no two adjacent vertices are assigned the same colour, is

(A) 2
(B) 3

(C) 4
(D) 5

47. Suppose we run Dijkstra’s single source shortest path algorithm on the following edge‐weighted directed graph with vertex P as the source.

In what order do the nodes get included into the set of vertices for which the shortest path distances are finalized?

(A) P, Q, R, S, T, U
(B) P, Q, R, U, S, T

(C) P, Q, R, U, T, S
(D) P, Q, T, R, U, S

48. A binary tree with n  1 nodes has n1 , n2 and n3 nodes of degree one, two and three respectively. The degree of a node is defined as the

number of its neighbours.

n3 can be expressed as:

(A) n1  n2 1

(B) n1  2

 n1  n2 
(C)

 2 

(D) n2 1

Starting with the above tree, while there remains a node v of degree two in the tree, add an edge between the two neighbours of v and then

C

C

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 13

remove v from the tree. How many edges will remain at the end of the process?

(A) 2*n1  3

(B) n2  2 * n1  2

(C) n3  n2

(D) n2  n1  2

49. Suppose the BST has been unsuccessfully searched for key 273. Which all of the above sequences list nodes in the order in which we could have

encountered them in the search?

(A) II and III only
(B) I and III only
(C) III and IV only
(D) III only

Which of the following statements is TRUE?

(A) I, II and IV are inorder sequences of three different BSTs

(B) I is a preorder sequence of some BST with 439 as the root
(C) II is an inorder sequence of some BST where 121 is the root and 52 is a leaf

(D) IV is a postorder sequence of some BST with 149 as the root.

How may distinct BSTs can be constructed with 3 distinct keys?

(A) 4
(B) 5
(C) 6
(D) 9

50. In an unweighted, undirected connect graph, the shortest path from a node S to every node is computed most efficiently, in terms of time

complexity, by

(A) Dijkstra’s algorithm starting from S.
(B) Warshall’s algorithm.
(C) Performing a DFS starting from S.

(D) Performing a BFS starting from S.

51. The following algorithm (written in pseudo‐Pascal) works on a undirected graph G

Program Explore (G)

procedure Visit (u)

begin

if Adj (u) is not empty

{ comment : Adj (u) is the list of edges incident to u}

then

begin

select an edge from Adj (u);

Let an edge e = (u, v);

remove e from Adj (u) and Adj (v);

Visit (v);

end

else

mark u as a finished vertex and remove u from LIST;

{Comment : LIST is the set of vertices in the graph}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 14

end;

begin

while LIST is not empty

do

begin

Let v ε LIST;

Visit (v);

end

end

NOTE: Initially Adj (u) is the list of all edges incident to u and LIST is the set of all vertices in the graph. They are globally accessible.

What kinds of sub graphs are obtained when this algorithm traverses the graphs G1 and G2 shown in Fig. 6 and Fig. 7, respectively?

Fig. 6 Fig. 7

(a) What is the commonly known traversal of graphs that can be obtained from the sub graphs generated by Program Explore?
(b) Show that the time complexity of the procedure is O (v + e) for a graph with v vertices and e edges, given that each vertex can be accessed

and removed from LIST in const time. Also show that all edges of the graph are traversed.

52. The maximum number of possible edges in an undirected graph with n vertices and k components is .

53. Kruskal’s algorithm for finding a minimum spanning tree of a weighted graph G with n vertices and m edges has the time‐complexity of:
A. (n2)
B. (m n)
C. (m + n)
D. (m log n)
E. (m2)

54. Show that all vertices in an undirected finite graph cannot have distinct degrees, if the graph has at least two vertices

55. Complexity of Kruskal’s algorithm for finding the minimum spanning tree of an undirected graph containing n vertices and m edges, if the edges

are sorted is .

56. Maximum number of edges in a planner graph with n vertices is .

57. A non‐planer graph with minimum number of vertices has

(A) 9 edges, 6 vertices
(B) 6 edges, 4 vertices
(C) 10 edges, 5 vertices
(D) 9 edges, 5 vertices

58. How many edges are there in a forest with p components having n vertices in all?

59. An independent set in a graph is a subset of vertices such that no two vertices in the subset are connected by an edge. An incomplete scheme for

greedy algorithm to find a maximum independent set in a tree is given below:

V: = Set of all vertices in a tree;

I: = φ do

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 15

begin

select a vertex u Є V such that

 ;

V: = V –{u};

If u is such that

 then I: = I U{u}

end;

Output (I);

Complete the algorithm by specifying the property of vertex u in each case. (4)

What is the time complexity of the algorithm?

60. Consider a simple connected graph G with n vertices and n edges (n>2). Then which of the following statements are true

(f) G has no cycles
(g) the graph obtained by removing any edges from G is not consider connected
(h) G has at least one cycle
(i) the graph obtained by removing any two edges from G is not consider connected
(j) none of the above.

61. The number of distinct simple graphs with upto three nodes is

(A) 15
(B) 10

(C) 7
(D) 9

62. The number of edges in a regular graph of degree d and n vertices are …………….

63. The minimum number of edges in a connected cyclic graph on n vertices is

(A) n ‐ 1
(B) n
(C) n + 1

(D) None of the above

64. How many minimum spanning trees does the following graph have? Draw them (weights are assigned to the edges).

65. Prove that in finite graph, the number of vertices of odd degree is always even.

66. A complete undirected, weighted graph G is given on the vertex set {0, 1, ..,n‐1} for any fixed ‘n’. Draw the minimum spanning tree of G if

(a) The weight of the edge (u, v) is |u – v|
(b) The weight of the edge (u, v) is u + v

67. Let G be the directed, weighted graph shown below in Fig. 17

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 16

x  x   y  y 2 2

1 2 1 2

Fig. 17

We are interested in the shortest paths from A.

(a) Output the sequence of vertices identified by the Dijkstra’s algorithm for single source shortest path when the algorithm is started at
node A. (2)

(b) Write down the sequence of vertices in the shortest path from A to E. (2)
(c) What is the cost of shortest path from A to E?

68. Which of the following algorithm design techniques is used in finding all pairs of shortest distances in a graph?

(a) Dynamic programming (b) Backtracking

(c) Greedy (d) Divide and Conquer

69. Consider a graph whose vertices are points in the plane with integer co‐ordinates (x,y) such that 1 ≤ x ≤ n and 1 ≤ y ≤ n, where n ≥ 2 is an integer.

Two vertices (x1, y1) and (x2, y2) are adjacent iff |x1 – x2| ≤ 1v |y1 – y2| ≤ 1. The weight of na edge {(x1, y1), (x2, y2)} is

.

(a) What is the weight of a minimum weight spanning tree in this graph? Write only the answer without any explanations. (2)

What is the weight of a maximum weight spanning tree in this graph? Write only the answer without any explanations.

70. Let G be a graph with 100 vertices numbered 1 to 100. Two vertices i and j are adjacent iff |i – j| = 8 or |i – j| = 12. The number of connected

components in G is

(A) 8 (B) 4 (C) 12 (D) 25

71. The number of articulation points of the following graph is:

(A) 0

(B) 1
(C) 2
(D) 3

72. Let G be an undirected graph with distinct edge weights. Let emax be the edge with maximum weight and emin the edge with minimum weight.

Which of the following is false?

(A) Every minimum spanning tree of G must contain emin
(B) If emax is an minimum spanning tree, then its removal must disconnect G
(C) No minimum spanning tree contains emax

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 17

(D) G has a unique minimum spanning tree

73. Let G be an undirected graph. Consider a depth first traversal G, and let T be the resulting depth first search tree. Let u be a vertex in G and v be

the first new (unvisited) vertex visited after visiting u in the traversal. Which of the following is always true?

(A) {u,v} must be an edge in G, and u is descendent of v in T
(B) {u,v} must be an edge in G, and v is descendent of u in T
(C) If {u,v} is not an edge in G then u is leaf in T

(D) If {u,v} is not an edge in G then u and v must have the same parent in T

74. How many undirected graphs (not necessarily connected) can be constructed out of a given set And = {v1, v2, …, vn} of n vertices?

A. n(n‐1)/2

B. 2n
C. n!
D. 2n(n – 1)/2

75. Consider a weighted undirected graph with vertex set And = {n1, n2, n3, n4, n5, n6} and edge set E = {(n1, n2, 2), (n1, n3, 8), (n1, n6, 3), (n2, n4, 4), (n2,

n5, 12), (n3, n4, 7), (n4, n5, 9), (n4, n6, 4)} The third value in each tuple represents the weight of the edge specified in the tuple.

(a) Lists the edges of a minimum spanning tree of the graph. (2)

(b) How many distinct minimum spanning tree does this graph have?

(c) Is the minimum among the edge weights of a minimum spanning tree unique over all possible minimum spanning trees of a graph? (1)

(d) Is the maximum among the edge weights of a minimum spanning tree unique over all possible minimum spanning trees of a graph?

76. The minimum number of colors required to color the vertices of a cycle with n nodes in such a way that no two adjacent nodes have the same

color is:

A. 2
B. 3

C. 4

D. n – 2 n/2 + 2

77. The Maximum number of edges in a n –node undirected graph without self loops is

A. n2

B. n(n – 1)/2
C. n ‐1

D. (n+1)(n)/2

78. The number of distinct simple graphs with upto three nodes is

(E) 15
(F) 10

(G) 7
(H) 9

79. Fill in the blanks in the following template of an algorithm to compute all pairs shortest path lengths in a directed graph G with n*n adjacency

matrix A. A[i, j] equals 1 if there is an edge in G from i to j, and 0 otherwise. Your aim in filling in the blanks

INITIALIZATION: For I = 1 … n

{For j = 1 … n

{If A[i,j] = 0 then P[i, j] = else P[i,j] = ;}

}

ALGORITHM: For i = 1 ... n

{ For j = 1 … n

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 18

{ For k = 1 … n

{P[_, _] = min{ };}

}

}

(a) Copy the complete line containing the blanks in the Initialization step and fill in the blanks. (1)
(b) Copy the complete line containing the blanks in the Initialization step and fill in the blanks. (3)
(c) Fill in the blank: The running time of the algorithm is O()

80. Let G be an arbitrary graph with n nodes and k components. If a vertex is removed from G, the number of components in the resultant graph

must necessarily lie between

(A) k and n
(B) k – 1 and k + 1

(C) k – 1 and n – 1
(D) k + 1 and n – k

81. Consider the following graph

Among the following sequences

I a b e g h f

II a b f e h g

III a b f h g e

IV a f g h b e

Which are depth first traversals of the above graph?

(A) I, II and IV only
(B) I and IV only
(C) II, III and IV only

(D) I, III and IV only

82. How many perfect matching are there in a complete graph of 6 vertices?

(A) 15

(B) 24
(C) 24
(D) 60

83. Let G = (V, E) be an undirected graph with a subgraph G1 = (V1, E1). Weights are assigned to edges of G as follows.

A single‐source shortest path algorithm is executed on the weighted graph (V, E, what) with an arbitrary vertex v1 of V1 as the source.

Which of the following can always be inferred from the path costs computed?

(A) The number of edges in the shortest paths from v1 to all vertices of G
(B) G1 is connected.
(C) V1 forms a clique in G

(D) G1 is a tree

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 19

84. What is the weight of a minimum spanning tree of the following graph?

(A) 29
(B) 31
(C) 38

(D) 41

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

for each w adjacent to v

if(!T[w].Known)

{

if(!T[v].Dist + Cv,w < T[w].Dist)

{

/* update of w */

Decrease(T[w].Dist to T[v].Dist + Cv,w);

T[w].path = v;

}

}

}

Dispose Queue(Q);

}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

UNIT V SORTING, SEARCHING AND HASH TECHNIQUES

Sorting algorithms: Insertion sort - Selection sort - Shell sort - Bubble sort - Quick sort - Merge

sort - Radix sort – Searching: Linear search –Binary Search Hashing: Hash Functions – Separate
Chaining – Open Addressing – Rehashing – Extendible Hashing.

SORTING:

Definition:

Sorting is a technique for arranging data in a particular order.

Order of sorting:

Order means the arrangement of data. The sorting order can be ascending or descending. The

ascending order means arranging the data in increasing order and descending order means

arranging the data in decreasing order.

Types of Sorting

Internal Sorting
External Sorting

Internal Sorting

Internal Sorting is a type of sorting technique in which data resides on main memory of

computer. It is applicable when the number of elements in the list is small.

E.g. Bubble Sort, Insertion Sort, Shell Sort, Quick Sort., Selection sort, Radix sort

External Sorting

External Sorting is a type of sorting technique in which there is a huge amount of data and it resides on

secondary devise(for eg hard disk,Magnetic tape and so no) while sorting.

E.g. Merge Sort, Multiway Merge Sort,Polyphase merge sort

Sorting can be classified based on

1.Computational complexity

2.Memory utilization

3. Stability

4. Number of comparisons.

ANALYSIS OF ALGORITHMS:

Efficiency of an algorithm can be measured in terms of:

Space Complexity: Refers to the space required to execute the algorithm

Time Complexity: Refers to the time required to run the program.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Sorting algorithms:

Insertion sort

Selection sort

Shell sort

Bubble sort

Quick sort

Merge sort

Radix sort

INSERTION SORTING:

The insertion sort works by taking elements from the list one by one and inserting them

in the correct position into a new sorted list.

Insertion sort consists of N-1 passes, where N is the number of elements to be sorted.

The ith pass will insert the ith element A[i] into its rightful place among

A[1],A[2],…,A[i-1].

After doing this insertion the elements occupying A[1],…A[i] are in sorted order.

How Insertion sort algorithm works?

Insertion Sort routine:

void Insertion_sort(int a[], int n)

{
int i, j, temp;

for (i = 0 ; i < n -1 ; i ++)

{
temp = a [j] ;

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

for (j = i ; j > 0 && a [j -1] > temp ; j --)

{

a[j] = a [j – 1] ;

}

a[j]=temp;

}}

Program for Insertion sort

#include<stdio.h>

void main(){

int n, a[25], i, j, temp;

printf("Enter number of elements \n");

scanf("%d", &n);

printf("Enter %d integers \n", n);

for (i = 0; i < n; i++)

scanf("%d", &a[i]);

for (i = 0 ; i < n; i++){

temp=a[i];

for (j=i;j > 0 && a[j -1]>temp;j--)

{
a[j] = a[j - 1];

}
a[j]=temp;}

printf("Sorted list in ascending order: \n ");
for (i = 0 ; i < n ; i++)

printf ("%d \n ", a[i]);}

OUTPUT:

Enter number of elements

6

Enter 6 integers

20 10 60 40 30 15

Sorted list in ascending order:

10

15

20

30

40

60

Advantage of Insertion sort

Simple implementation.

Efficient for (quite) small data sets.

Efficient for data sets that are already substantially sorted.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Disadvantages of Insertion sort

It is less efficient on list containing more number of elements.

As the number of elements increases the performance of the program would be slow.

Insertion sort needs a large number of element shifts.

Selection Sort

Selection sort selects the smallest element in the list and place it in the first position then selects

the second smallest element and place it in the second position and it proceeds in the similar way

until the entire list is sorted. For “n” elements, (n-1) passes are required. At the end of the ith

iteration, the ith smallest element will be placed in its correct position.

Selection Sort routine:

void Selection_sort(int a[], int n)

{
int i , j , temp , position ;

for (i = 0 ; i < n – 1 ; i ++)

{
position = i ;
for (j = i + 1 ; j < n ; j ++)

{
if (a[position] > a[j])

position = j;}
temp = a[i];
a[i] = a[position];

a[position] = temp;

}}

How Selection sort algorithm works?

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Program for Selection sort

#include <stdio.h>

void main()

{

int a [100] , n , i , j , position , temp ;

printf ("Enter number of elements \n") ;

scanf ("%d", &n) ;
printf (" Enter %d integers \n ", n) ;

for (i = 0 ; i < n ; i ++)

scanf ("%d", & a[i]) ;

for (i = 0 ; i < (n - 1) ; i ++)

{

position = i ;

for (j = i + 1 ; j < n ; j ++)

{

if (a [position] > a [j])
position = j ;

}
if (position != i)

{
temp = a [i] ;
a [i] = a [position] ;
a [position] = temp ;

}

}
printf ("Sorted list in ascending order: \n ") ;
for (i = 0 ; i < n ; i ++)

printf (" %d \n ", a[i]) ;

}

OUTPUT:

Enter number of elements

5

Enter 5 integers

8 3 9 5 1

Sorted list in ascending order:

1

3

5

8

9

Advantages of selection sort

• Memory required is small.

• Selection sort is useful when you have limited memory available.

• Relatively efficient for small arrays.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Disadvantage of selection sort

• Poor efficiency when dealing with a huge list of items.

• The selection sort requires n-squared number of steps for sorting n elements.

• The selection sort is only suitable for a list of few elements that are in random order.

Shell Sort

• Invented by Donald shell.

• It improves upon bubble sort and insertion sort by moving out of order elements more

than one position at a time.

• In shell sort the whole array is first fragmented into K segments, where K is preferably a

prime number.

• After the first pass the whole array is partially sorted.

• In the next pass, the value of K is reduced which increases the size of each segment and

reduces the number of segments.

• The next value of K is chosen so that it is relatively prime to its previous value.

• The process is repeated until K=1 at which the array is sorted.

• The insertion sort is applied to each segment so each successive segment is partially

sorted.

• The shell sort is also called the Diminishing Increment sort, because the value of k

decreases continuously

A Shell Sort with Increments of Three

A Shell Sort after Sorting Each Sublist

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Shell Sort: A Final Insertion Sort with Increment of 1

Shell Sort routine:

void Shell_sort (int a[], int n)

{
int i, j, k, temp;
for (k = n / 2 ; k > 0 ; k = k / 2)

for (i = k ; i < n ; i + +)

{
temp = a [i] ;

for (j = i ; j > = k && a [j – k] > temp ; j = j – k)

{
a [j] = a [j – k] ;

}
a [j] = temp ;

}

}

Program for Shell sort

#include<stdio.h>

void main()

{
int n, a[25], i, j,k,temp;
printf("Enter number of elements \n");
scanf("%d", &n);

printf("Enter %d integers \n", n);

for (i = 0; i < n; i++)

scanf("%d", &a[i]);

for (k = n / 2 ; k>0 ; k=k/ 2){

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

for (i = k ; i < n ; i ++)

{
temp = a [i] ;

for (j = i ; j>= k && a [j - k]>temp ; j=j - k)

{
a [j] = a [j - k] ;

}
a [j] = temp ;

}

}

printf("Sorted list in ascending order using shell sort: \n ");
for (i = 0 ; i < n ; i++)

printf ("%d\t ", a[i]);
}

OUTPUT:

Enter number of elements

10

Enter 10 integers

81 94 11 96 12 35 17 95 28 58

Sorted list in ascending order using shell sort:

11 12 17 28 35 58 81 94 95 96

//PROGRAM FOR SHELL USING FUNCTION

#include < stdio.h >

void main()

{
int a [5] = { 4, 5, 2, 3, 6 } , i = 0 ;
ShellSort (a, 5) ;

printf(“Example using function”);

printf(" After Sorting :") ;

for (i = 0 ; i < 5 ; i ++)

printf (" %d ", a[i]) ;
}

void ShellSort (int a [5] , int n)

{
int i , j , k , temp ;
for (k = n / 2 ; k > 0 ; k / = 2)

{
for (i = k ; i < n ; i ++)

{
temp = a [i] ;

for (j = i ; j > = k && a [j – k] > temp ; j = j – k){

a [j] = a [j – k] ;
}

a [j] = temp ; } }}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

OUTPUT:

After Sorting : 2 3 4 5 6

Advantages of Shell sort

• Efficient for medium-size lists.

Disadvantages of Shell sort

• Complex algorithm, not nearly as efficient as the merge, heap and quick sorts

Bubble Sort

Bubble sort is one of the simplest internal sorting algorithms.

Bubble sort works by comparing two consecutive elements and the largest element

among these two bubbles towards right at the end of the first pass the largest element gets

sorted and placed at the end of the sorted list.

This process is repeated for all pairs of elements until it moves the largest element to the

end of the list in that iteration.

Bubble sort consists of (n-1) passes, where n is the number of elements to be sorted.

In 1st pass the largest element will be placed in the nth position.

In 2nd pass the second largest element will be placed in the (n-1)th position.

In (n-1)th pass only the first two elements are compared.

Bubble sort routine:

void Bubble_sort (int a [] , int n)

{
int i, j, temp;
for(i = 0; i < n - 1; i++){

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

for(j = 0; j < n – i - 1; j++)

{
if(a[j] > a [j + 1])

{

}

} }}

temp = a [j];
a[j] = a[j + 1];
a[j + 1] = temp;

Program for Bubble sort
#include<stdio.h >
#include<conio.h >

void main()
{

int a [20], i, j, temp, n ;

printf ("Enter the number of elements");

scanf ("%d",&n);

printf("Enter the numbers");

for(i=0;i < n ;i++)

scanf("%d",&a[i]);

for(i=0;i<n-1;i++)

{

for(j=0;j<n-i-1;j++)

{

if(a[j]>a[j + 1]){

temp = a[j] ;
a[j] = a[j + 1] ;

a[j+ 1] = temp;
}

}

}

printf("\nSorted array\t");
for(i=0;i<n;i++)

printf("%d\t",a[i]);
}

OUTPUT:

Enter the number of elements5

Enter the numbers8 3 9 5 1

Sorted array 1 3 5 8 9

Advantage of Bubble sort

• It is simple to write
• Easy to understand

• It only takes a few lines of code.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Disadvantage of Bubble sort

• The major drawback is the amount of time it takes to sort.

• The average time increases almost exponentially as the number of table elements

increase.

Quick Sort

Quicksort is a divide and conquer algorithm.

The basic idea is to find a “pivot” item in the array and compare all other items with pivot

element.

Shift items such that all of the items before the pivot are less than the pivot value and all
the items after the pivot are greater than the pivot value.

After that, recursively perform the same operation on the items before and after the pivot.

Find a “pivot” item in the array. This item is the basis for comparison for a single round.

Start a pointer (the left pointer) at the first item in the array.

Start a pointer (the right pointer) at the last item in the array.

1. Assume A[0]=pivot which is the left. i.e pivot=left.

2. Set i=left+1; i.e A[1];

3. Set j=right. ie. A[6] if there are 7 elements in the array

4. If A[pivot]>A[i],increment i and if A[j]>A[pivot],then decrement j, Otherwise swap A[i]

and A[j] element.

5. If i=j,then swap A[pivot] and A[j].

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Quick Sort routine:

void Quicksort (int a [], int left, int right)

{

int i, j, p, temp;
if (left < right)

{
p = left;

i = left + 1; j
= right;

while (i < j)

{
while (a [i] < = a [p])

i = i + 1;

while (a [j] > a [p])

j = j - 1;

if (i < j)

{
temp = a [i];

a [i] = a [j];
a [j] = temp;

}

}

temp = a [p];

a [p] = a [j];
a [j] = temp;

quicksort (a, left, j - 1);

quicksort (a, j + 1, right);

} }

Program for Quick sort

#include<stdio.h>

void quicksort (int [10], int, int) ;

void main()

{
int a[20], n, i ;
printf("Enter size of the array:");

scanf("%d",&n);

printf(" Enter the numbers :");

for (i = 0 ; i < n ; i ++)

scanf ("%d",&a[i]);

quicksort (a , 0 , n - 1);

printf (" Sorted elements: ");

for (i = 0 ; i < n ; i ++)

printf ("%d\t",a[i]);

}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

void quicksort (int a[10], int left, int right)
{

int p, j, temp, i ;

if (left < right)

{

p = left ;

i = left ;

j = right ;

while (i < j)

{
while(a[i]<= a[p] && i<right)

i++ ;

while (a [j] > a [p])

j--;

if (i < j)

{

temp = a [i] ;

a [i] = a [j] ;
a[j] = temp ;

}

}
temp = a [p] ;

a [p] = a [j] ;

a [j] =temp ;

quicksort (a , left , j - 1) ;

quicksort (a , j + 1 , right) ;

}

}

OUTPUT:

Enter size of the array:8

Enter the numbers :40 20 70 14 60 61 97 30

Sorted elements: 14 20 30 40 60 61 70 97

Advantages of Quick sort

• Fast and efficient as it deals well with a huge list of items.

• No additional storage is required.

Disadvantages of Quick sort

• The difficulty of implementing the partitioning algorithm.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Merge Sort

Merge sort is a sorting algorithm that uses the divide, conquer, and combine algorithmic

paradigm.

Divide means partitioning the n-element array to be sorted into two sub-arrays of n/2 elements.

If there are more elements in the array, divide A into two sub-arrays, A1 and A2, each containing

about half of the elements of A.

Conquer means sorting the two sub-arrays recursively using merge sort.

Combine means merging the two sorted sub-arrays of size n/2 to produce the sorted array of n

elements.

The basic steps of a merge sort algorithm are as follows:

If the array is of length 0 or 1, then it is already sorted.

Otherwise, divide the unsorted array into two sub-arrays of about half the size.

Use merge sort algorithm recursively to sort each sub-array.

Merge the two sub-arrays to form a single sorted list.

Merge Sort routine:

void Merge_sort (int a [] , int temp [] , int n)

{
msort (a , temp , 0 , n - 1) ;

}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net void msort (int a[] , int temp [] , int left , int right){

www.padeepz.net

int center ;
if(left < right){

center = (left + right) / 2 ;

msort (a , left , center) ;

msort (a , temp , center + 1 , right) ;

merge (a , temp , n , left , center , right) ;

}}
void merge (int a [] , int temp [] , int n , int left , int center , int right)

{

int i = 0 , j , left_end = center , center = center + 1 ;
while((left < = left_end) && (center < = right))

{
if(a [left] < = a [center])

{

}

else

{

}

}

temp [i] = a [left] ;
i + + ;
left + + ;

temp [i] = a [center] ;

i + + ;

center + + ;

while(left <= left_end)

{
temp [I] = a [left] ;
left + + ;

i + + ;

}
while(center < = right)

{

temp [i] = a [center] ;

center + + ;

i + + ;

}

for (i = 0 ; i < n ; i + +)

print temp [i] ;

}

Program for merge sort

#include<stdio.h>

void mergesort(int a[],int i,int j);

void merge(int a[],int i1,int j1,int i2,int j2);

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

int main()

{
int a[30],n,i;
printf("Enter no of elements:");
scanf("%d",&n);

printf("Enter array elements:");

for(i=0;i<n;i++)

scanf("%d",&a[i]);

mergesort(a,0,n-1);

printf("\nSorted array is :");

for(i=0;i<n;i++)

printf("%d ",a[i]);

return 0;

}
void mergesort(int a[],int i,int j)

{

int mid;

if(i<j)

{
mid=(i+j)/2;

mergesort(a,i,mid); //left recursion mergesort(a,mid+1,j);
//right recursion merge(a,i,mid,mid+1,j); //merging of two

sorted sub-arrays

}}
void merge(int a[],int i1,int j1,int i2,int j2)

{

int temp[50]; //array used for merging

int i,j,k;

i=i1; //beginning of the first list

j=i2; //beginning of the second list

k=0;

while(i<=j1 && j<=j2) //while elements in both lists
{ if(a[i]<a[j])

temp[k++]=a[i++];

else

temp[k++]=a[j++];

}

while(i<=j1) //copy remaining elements of the first list

temp[k++]=a[i++];

while(j<=j2) //copy remaining elements of the second list

temp[k++]=a[j++];

//Transfer elements from temp[] back to a[]

for(i=i1,j=0;i<=j2;i++,j++)

a[i]=temp[j];

}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

OUTPUT:

Enter no of elements:8

Enter array elements:24 13 26 1 2 27 38 15

Sorted array is :1 2 13 15 24 26 27 38

Advantages of Merge sort

• Mergesort is well-suited for sorting really huge amounts of data that does not fit into
memory.

• It is fast and stable algorithm

Disadvantages of Merge sort

• Merge sort uses a lot of memory.

• It uses extra space proportional to number of element n.

• This can slow it down when attempting to sort very large data.

Radix Sort

Radix sort is one of the linear sorting algorithms. It is generalized form of bucket sort. It
can be performed using buckets from 0 to 9.

It is also called binsort, card sort.

It works by sorting the input based on each digit. In first pass all the elements are stored

according to the least significant digit.

In second pass the elements are arranged according to the next least significant digit and

so on till the most significant digit.

The number of passes in a Radix sort depends upon the number of digits in the given

numbers.

Algorithm for Radix sort

Steps1: Consider 10 buckets (1 for each digit 0 to 9)

Step2: Consider the LSB (Least Significant Bit) of each number (numbers in the one‟s

Place…. E.g., in 43 LSB = 3)

Step3: Place the elements in their respective buckets according to the LSB of each number

Step4: Write the numbers from the bucket (0 to 9) bottom to top.

Step5: repeat the same process with the digits in the 10‟s place (e.g. In 43 MSB =4)

Step6: repeat the same step till all the digits of the given number are consider.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Consider the following numbers to be sorted using Radix sort.

Sorted list of array : 3 15 27 31 37 43 80

Routine for Radix sort

void Radix_sort (int a [] , int n)

{

int bucket [10] [5] , buck [10] , b [10] ;
int i , j , k , l , num , div , large , passes ;

div = 1 ;

num = 0 ;

large = a [0] ;

for (i = 0 ; i < n ; i ++)

{
if (a[I] > large)

{
large = a [i] ;

}
while (large > 0)

{
num ++ ;

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

large = large / 10 ;

}
for (passes = 0 ; passes < num ; passes ++)

{
for (k = 0 ; k < 10 ; k ++)

{
buck [k] = 0 ;

}
for (i = 0 ; i < n ; i ++)

{

}

i = 0 ;

l = ((a [i] / div) % 10) ;
bucket [l] [buck [l] ++] = a [i] ;

for (k = 0 ; k < 10 ; k ++)

{
for (j = 0 ; j < buck [k] ; j ++)

{
a [i ++] = bucket [k] [j] ;

}

}
div * = 10 ;

}
}

}

Program for Radix sort

#include<stdio.h >

void main()

{
int a [5] = { 4, 5, 2, 3, 6 } , i = 0 ;

void Radix_sort (int a [] , int n);
Radix_sort(a,5);

printf(" After Sorting :") ;
for (i = 0 ; i < 5 ; i ++)

printf (" %d ", a[i]) ;

}

void Radix_sort (int a [] , int n)

{

int bucket [10] [5] , buck [10] , b [10] ;
int i , j , k , l , num , div , large , passes ;

div = 1 ;

num = 0 ;

large = a [0] ;

for (i = 0 ; i < n ; i ++){

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

if (a[i] > large)

{

large = a [i] ;

}

while (large > 0)

{
num ++ ;

large = large / 10 ;

}
for (passes = 0 ; passes < num ; passes ++)

{

for (k = 0 ; k < 10 ; k ++)

{

buck [k] = 0 ;

}

for (i = 0 ; i < n ; i ++)

{

}

i = 0 ;

l = ((a [i] / div) % 10) ;

bucket [l] [buck [l] ++] = a [i] ;

for (k = 0 ; k < 10 ; k ++)

{

for(j=0 ; j<buck[k];j++)

{
a[i++]=bucket[k][j] ;

}

}
div*= 10 ;

}

}

}

Advantages of Radix sort:

• Fast and complexity does not depend on the number of data.

• Radix Sort is very simple.

Disadvantages of Radix sort:

• Radix Sort takes more space than other sorting algorithms, since in addition to the array that

will be sorted, you need to have a sub list for each of the possible digits or letters.

• Since Radix Sort depends on the digits or letters, Radix Sort is also much less flexible than

other sorts.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Analysis of Sorting algorithms:

S.No Algorithm Best Case Analysis Average Case

Analysis

Worst Case

Analysis

1 Insertion sort O(N) O(N2) O(N2)

2 Selection sort O(N2) O(N2) O(N2)

3 Shell sort O(N log N) O(N1.5) O(N2)

4 Bubble sort O(N2) O(N2) O(N2)

5 Quick sort O(N log N) O(N log N) O(N 2)

6 Merge sort O(N log N) O(N log N) O(N log N)

7 Radix or bucket or
binsort sort or card
sort

O(N log N) O(N log N) O(N log N)

SEARCHING

Searching is an algorithm, to check whether a particular element is present in the list.

Types of searching:-

Linear search

Binary Search

Linear Search

Linear search is used to search a data item in the given set in the sequential manner, starting from

the first element. It is also called as sequential search

Linear Search routine:

void Linear_search (int a[] , int n)

{

int search , count = 0 ;

for (i = 0 ; i < n ; I ++)

{

if (a [i] = = search)

{

count ++ ;

}

}

if (count = = 0)

print “Element not Present” ;

else

print “Element is Present in list" ;

}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Program for Linear search

#include < stdio.h >

void main()

{

int a [10] , n , i , search, count = 0 ;

printf (" Enter the number of elements \ t ") ;

scanf (" %d " , & n) ;

printf (" \n Enter %d numbers \n " , n) ;

for (i = 0 ; i < n ; i ++)

scanf (" %d " , & a [i]) ;

printf (" \n Array Elements \n ") ;

for (i = 0 ; i < n ; i ++)

printf (" %d \t " , a [i]) ;

printf (" \ n \ n Enter the Element to be searched: \ t ") ;

scanf (" % d " , & search) ;

for (i =0 ; i < n; i ++)

{

if (search = = a [i])

count ++ ;

}
if (count = = 0)

printf(" \n Element %d is not present in the array " , search) ;
else

printf (" \n Element %d is present %d times in the array \n " , search , count) ;
}

OUTPUT:
Enter the number of elements 5
Enter the numbers

20 10 5 25 100
Array Elements

20 10 5 25 100

Enter the Element to be searched: 25

Element 25 is present 1 times in the array

Advantages of Linear search:

• The linear search is simple - It is very easy to understand and implement;

• It does not require the data in the array to be stored in any particular order.

Disadvantages of Linear search:

• Slower than many other search algorithms.

• It has a very poor efficiency.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Binary Search

Binary search is used to search an item in a sorted list. In this method , initialize the lower

limit and upper limit.

The middle position is computed as (first+last)/2 and check the element in the middle

position with the data item to be searched.

If the data item is greater than the middle value then the lower limit is adjusted to one

greater than the middle value.Otherwise the upper limit is adjusted to one less than the
middle value.

Working principle:

Algorithm is quite simple. It can be done either recursively or iteratively:
1. Get the middle element;

2. If the middle element equals to the searched value, the algorithm stops;
3. Otherwise, two cases are possible:

o Search value is less than the middle element. In this case, go to the step 1 for the
part of the array, before middle element.

o Searched value is greater, than the middle element. In this case, go to the step 1
for the part of the array, after middle element.

Example 1.

Find 6 in {-1, 5, 6, 18, 19, 25, 46, 78, 102, 114}.

Step 1 (middle element is 19 > 6): -1 5 6 18 19 25 46 78 102 114

Step 2 (middle element is 5 < 6): -1 5 6 18 19 25 46 78 102 114

Step 3 (middle element is 6 == 6): -1 5 6 18 19 25 46 78 102 114

Binary Search routine:

void Binary_search (int a[] , int n , int search)

{

int first, last, mid ;

first = 0 ;

last = n-1 ;

mid = (first + last) / 2 ;

while (first < = last)

{

if (Search > a [mid])
first = mid + 1 ;

else if (Search = = a [mid])

{

print “Element is present in the list" ;

break ;

}

else {

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

last = mid – 1 ;

mid = (first + last) / 2 ;

}

if(first > last)

print “Element Not Found” ;

}

Program for Binary Search:

#include<stdio.h>

void main()

{
int a [10] , n , i , search, count = 0 ;

void Binary_search (int a[] , int n , int search);

printf ("Enter the number of elements \t") ;

scanf ("%d",&n);

printf("\nEnter the numbers\n") ;

for (i = 0; i<n;i++)

scanf("%d",&a[i]);

printf("\nArray Elements\n") ;

for (i = 0 ; i < n ; i ++)

printf("%d\t",a[i]) ;

printf ("\n\nEnter the Element to be searched:\t");

scanf("%d",&search);

Binary_search(a,n,search);

}

void Binary_search (int a[] , int n , int search)

{

int first, last, mid ;

first = 0 ;

last = n-1 ;

mid = (first + last) / 2 ;

while (first<=last)

{

if(search>a[mid])

first = mid + 1 ;

else if (search==a[mid])

{
printf("Element is present in the list");

break ;

}

else

last = mid - 1 ;

mid = (first + last) / 2 ;

}

if(first > last)

printf("Element Not Found");

}

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

OUTPUT:

Enter the number of elements 5

Enter the numbers

20 25 50 75 100

Array Elements

20 25 50 75 100

Enter the Element to be searched: 75

Element is present in the listPress any key to continue . . .

Advantages of Binary search:

In Linear search, the search element is compared with all the elements in the array. Whereas

in Binary search, the search element is compared based on the middle element present in the

array.

A technique for searching an ordered list in which we first check the middle item and - based

on that comparison - "discard" half the data. The same procedure is then applied to the

remaining half until a match is found or there are no more items left.

Disadvantages of Binary search:

Binary search algorithm employs recursive approach and this approach requires more

stack space.

It requires the data in the array to be stored in sorted order.

It involves additional complexity in computing the middle element of the array.

Analysis of Searching algorithms:

S.No Algorithm Best Case Analysis Average Case

Analysis

Worst Case

Analysis

1 Linear search O(1) O(N) O(N)

2 Binary search O(1) O(log N) O(log N)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

HASHING :

Hashing is a technique that is used to store, retrieve and find data in the data structure

called Hash Table. It is used to overcome the drawback of Linear Search (Comparison) &

Binary Search (Sorted order list). It involves two important concepts-

 Hash Table

 Hash Function

Hash table

A hash table is a data structure that is used to store and retrieve data (keys) very
quickly.

It is an array of some fixed size, containing the keys.

Hash table run from 0 to Tablesize – 1.

Each key is mapped into some number in the range 0 to Tablesize – 1.

This mapping is called Hash function.

Insertion of the data in the hash table is based on the key value obtained from the

hash function.

Using same hash key value, the data can be retrieved from the hash table by few

or more Hash key comparison.

The load factor of a hash table is calculated using the formula:

(Number of data elements in the hash table) / (Size of the hash table)

Factors affecting Hash Table Design

Hash function

Table size.

Collision handling scheme

0

1

2

3

.

. Simple Hash table with table size = 10

8

9

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

H (key) = key % Tablesize

Hash function:

It is a function, which distributes the keys evenly among the cells in the Hash

Table.

Using the same hash function we can retrieve data from the hash table.

Hash function is used to implement hash table.

The integer value returned by the hash function is called hash key.

If the input keys are integer, the commonly used hash function is

typedef unsigned int index;

index Hash (const char *key , int Tablesize)

{

unsigned int Hashval = 0 ;

while (* key ! = „ \0 „)

Hashval + = * key ++ ;

return (Hashval % Tablesize) ;

}

A simple hash function

Types of Hash Functions

1. Division Method

2. Mid Square Method

3. Multiplicative Hash Function

4. Digit Folding

1. Division Method:

It depends on remainder of division.

Divisor is Table Size.

Formula is (H (key) = key % table size)

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

E.g. consider the following data or record or key (36, 18, 72, 43, 6) table size = 8

2. Mid Square Method:

We first square the item, and then extract some portion of the resulting digits. For

example, if the item were 44, we would first compute 442=1,936. Extract the middle two digit

93 from the answer. Store the key 44 in the index 93.

93

3. Multiplicative Hash Function:

Key is multiplied by some constant value.

Hash function is given by,

H(key)=Floor (P * (key * A))

P = Integer constant [e.g. P=50]

A = Constant real number [A=0.61803398987],suggested by Donald Knuth to use this

constant

44

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

E.g. Key 107

H(107)=Floor(50*(107*0.61803398987))

=Floor(3306.481845)

H(107)=3306

Consider table size is 5000

3306

4999

4. Digit Folding Method:

The folding method for constructing hash functions begins by dividing the item into

equal-size pieces (the last piece may not be of equal size). These pieces are then added together

to give the resulting hash key value. For example, if our item was the phone number 436-555-

4601, we would take the digits and divide them into groups of 2 (43, 65, 55, 46, 01). After the

addition, 43+65+55+46+01, we get 210. If we assume our hash table has 11 slots, then we need

to perform the extra step of dividing by 11 and keeping the remainder. In this case 210 % 11 is 1,

so the phone number 436-555-4601 hashes to slot 1.

6-555-4601

107

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Collision:

If two more keys hashes to the same index, the corresponding records cannot be stored in the

same location. This condition is known as collision.

Characteristics of Good Hashing Function:

 It should be Simple to compute.

 Number of Collision should be less while placing record in Hash Table.

 Hash function with no collision  Perfect hash function.

 Hash Function should produce keys which are distributed uniformly in hash table.

 The hash function should depend upon every bit of the key. Thus the hash

function that simply extracts the portion of a key is not suitable.

Collision Resolution Strategies / Techniques (CRT):

If collision occurs, it should be handled or overcome by applying some technique. Such

technique is called CRT.

There are a number of collision resolution techniques, but the most popular are:

 Separate chaining (Open Hashing)

 Open addressing. (Closed Hashing)

Linear Probing

Quadratic Probing

Double Hashing

Separate chaining (Open Hashing)

Open hashing technique.

Implemented using singly linked list concept.

Pointer (ptr) field is added to each record.

When collision occurs, a separate chaining is maintained for colliding data.

Element inserted in front of the list.

H (key) =key % table size

Two operations are there:-

 Insert

 Find

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Structure Definition for Node
typedef Struct node *Position;
Struct node

{
int data; defines the nodes

Position next;

};

Structure Definition for Hash Table

typedef Position List;
struct Hashtbl

{ Defines the hash table which contains
int Tablesize; array of linked list

List * theLists;
};

Initialization for Hash Table for Separate Chaining

Hashtable initialize(int Tablesize)

{

HashTable H;

int i;

H = malloc (sizeof(struct HashTbl)); Allocates table

H  Tablesize = NextPrime(Tablesize);

Hthe Lists=malloc(sizeof(List) * HTablesize);  Allocates array of list

for(i = 0; i < H  Tablesize; i++)

{

H  TheLists[i] = malloc(Sizeof(Struct node));  Allocates list headers

H  TheLists[i]  next = NULL;

}

return H;

}

Insert Routine for Separate Chaining

void insert (int Key, Hashtable H)

{

Position P, newnode; *[Inserts element in the Front of the list always]*

List L;

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

P = find (key, H);

if(P = = NULL)

{

newnode = malloc(sizeof(Struct node));

L = H  TheLists[Hash(key,Tablesize)];

newnode  nex t= L  next;

newnode  data = key;

L  next = newnode;

}}

Position find(int key, Hashtable H){

Position P, List L;

L = H TheLists[Hash(key,Tablesize)];

P = L  next;

while(P != NULL && P  data != key)

P = P  next;

return P;}

If two keys map to same value, the elements are chained together.

Initial configuration of the hash table with separate chaining. Here we use SLL(Singly Linked List)

concept to chain the elements.

0

1

2

3

4

5

6

7

8

9

 NULL

 NULL

 NULL

 NULL

 NULL

 NULL

 NULL

 NULL

 NULL

 NULL

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Insert the following four keys 22 84 35 62 into hash table of size 10 using separate chaining.

The hash function is

H(key) = key % 10

1. H(22) = 22 % 10 =2 2. 84 % 10 = 4

3.H(35)=35%10=5 4. H(62)=62%10=2

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Advantages

1. More number of elements can be inserted using array of Link List

Disadvantages

1. It requires more pointers, which occupies more memory space.

2. Search takes time. Since it takes time to evaluate Hash Function and also to traverse the

List

Open Addressing

Closed Hashing

Collision resolution technique

Uses Hi(X)=(Hash(X)+F(i))mod Tablesize

When collision occurs, alternative cells are tried until empty cells are found.

Types:-

 Linear Probing
 Quadratic Probing
 Double Hashing

Hash function

 H(key) = key % table size.

Insert Operation

 To insert a key; Use the hash function to identify the list to which the
element should be inserted.

 Then traverse the list to check whether the element is already present.

 If exists, increment the count.

 Else the new element is placed at the front of the list.

Linear Probing:

Easiest method to handle collision.

Apply the hash function H (key) = key % table size

Hi(X)=(Hash(X)+F(i))mod Tablesize,where F(i)=i.

How to Probing:

first probe – given a key k, hash to H(key)

second probe – if H(key)+f(1) is occupied, try H(key)+f(2)

And so forth.

Probing Properties:

We force f(0)=0

The ith probe is to (H (key) +f (i)) %table size.

If i reach size-1, the probe has failed.

Depending on f (i), the probe may fail sooner.

Long sequences of probe are costly.

Probe Sequence is:

H (key) % table size

H (key)+1 % Table size

H (Key)+2 % Table size

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

1. H(Key)=Key mod Tablesize

This is the common formula that you should apply for any hashing

If collocation occurs use Formula 2

2. H(Key)=(H(key)+i) Tablesize

Where i=1, 2, 3, …… etc

Example: - 89 18 49 58 69; Tablesize=10

1. H(89) =89%10

=9

2. H(18) =18%10

=8

3. H(49) =49%10

=9 ((coloids with 89.So try for next free cell using formula 2))

h1(49) = (H(49)+1)%10

= (9+1)%10

=10%10

=0

4. H(58) =58%10

=8 ((colloids with 18))

h1(58) = (H(58) +1)%10

= (8+1) %10

=9%10

=9 =>Again collision

i=2 h2(58) =(H(58)+2)%10

=(8+2)%10

=10%10

=0 =>Again collision

i=1

i=1

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

 EMPTY 89 18 49 58 69

0 49 49 49

1 58 58

2 69

3

4

5

6

7

8 18 18 18

9 89 89 89 89

Linear probing

Quadratic Probing

To resolve the primary clustering problem, quadratic probing can be used. With quadratic

probing, rather than always moving one spot, move i2 spots from the point of collision, where

i is the number of attempts to resolve the collision.

Another collision resolution method which distributes items more evenly.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

From the original index H, if the slot is filled, try cells H+12, H+22, H+32,.., H + i2 with

wrap-around.

Hi(X)=(Hash(X)+F(i))mod Tablesize,F(i)=i2

Hi(X)=(Hash(X)+ i2)mod Tablesize

Limitation: at most half of the table can be used as alternative locations to resolve collisions.

This means that once the table is more than half full, it's difficult to find an empty spot. This

new problem is known as secondary clustering because elements that hash to the same hash

key will always probe the same alternative cells.

Double Hashing

Double hashing uses the idea of applying a second hash function to the key when a

collision occurs. The result of the second hash function will be the number of positions forms

the point of collision to insert.

There are a couple of requirements for the second function:

It must never evaluate to 0 must make sure that all cells can be probed.

Hi(X)=(Hash(X)+i*Hash2(X))mod Tablesize

A popular second hash function is:

Hash2 (key) = R - (key % R) where R is a prime number that is smaller than the size of the

table.

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

Rehashing

Once the hash table gets too full, the running time for operations will start to take too

long and may fail. To solve this problem, a table at least twice the size of the original will be

built and the elements will be transferred to the new table.

Advantage:

A programmer doesn‟t worry about table system.

Simple to implement

Can be used in other data structure as well

The new size of the hash table:

should also be prime

will be used to calculate the new insertion spot (hence the name rehashing)

This is a very expensive operation! O(N) since there are N elements to rehash and the

table size is roughly 2N. This is ok though since it doesn't happen that often.

The question becomes when should the rehashing be applied?

Some possible answers:

once the table becomes half full

once an insertion fails

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net

1

100 000

111 000

101 000

111 001

0

once a specific load factor has been reached, where load factor is the ratio of the

number of elements in the hash table to the table size

Extendible Hashing

Extendible Hashing is a mechanism for altering the size of the hash table to accommodate

new entries when buckets overflow.

Common strategy in internal hashing is to double the hash table and rehash each entry.

However, this technique is slow, because writing all pages to disk is too expensive.

Therefore, instead of doubling the whole hash table, we use a directory of pointers to

buckets, and double the number of buckets by doubling the directory, splitting just the

bucket that overflows.

Since the directory is much smaller than the file, doubling it is much cheaper. Only one

page of keys and pointers is split.

000 100

010 100

100 000

111 000

001 000

011 000

101 000

111 001

001 010

101 100

101 110

000 100

010 100

001 000

011 000

00 01 10 11

111 000

111 001

100 000

101 000

101 100

101 110

010 100

011 000

000 100

001 000

001 010

001 011

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 1

SET-2

Arrays, Tables and Set

1. A hash table with ten buckets with one slot per bucket is shown in Figure 1, with the symbols S1 to S7 entered into it using some hashing function

with linear probing. The worst case number of comparison required when the symbol being searched is not in the table is ……………………….

0 S7

1 S1

2

3 S4

4 S2

5

6 S5

7

8 S6

9 S3

Fig. 1

2. The keys 12, 18, 13, 2, 3, 23, 5 and 15 are inserted into an initially empty hash table of length 10 using open addressing with hash function

h(k)  k mod10 and linear probing. What is the resultant hash table?

3.

4. Consider a hash table of size 11 that uses open addressing with linear probing. Let h(k)

records with keys

43 36 92 87 11 4 71 13 14

k mod11be a hash function used. A sequence of

(A) (B) (C) (d)

 0 0 0 0

1 1 1 1

2 2 2 12 2 12 2 12, 2

3 23 3 13 3 13 3 13, 3, 23

4 4 4 2 4

5 15 5 5 5 3 5 5,15

6 6 6 23 6

7 7 7 5 7

8 18 8 18 8 18 8 18

9 9 9 15 9

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 2

is inserted into an initially empty hash table, the bins of which are indexed from zero to ten. What is the index of the bin into which the last record

is inserted?

(A) 3
(B) 4

(C) 6
(D) 7

5. The minimum number of comparisons required to determine if an integer appears more than n/2 times in a sorted array of n integers is

(A) (n)

(B) (log n)

(C) (log* n)

(D) (1)

6. Consider a hash function that distributes keys uniformly. The hash table size is 20. After hashing of how many keys will the probability that any new

key hashed collides with an existing one exceed 0.5.

(A) 5 (B) 6 (C) 7 (D) 10

7. Consider a hash table of size seven, with starting index zero, and a hash function (3x + 4) mod 7. Assuming the hash table is initially empty, which of

the following is the contents of the table when the sequence 1, 3, 8, 10 is inserted into the table using closed hashing? Note that – denotes an empty

location in the table.

(A) 8, ‐, ‐, ‐, ‐, ‐, 10
(B) 1, 8, 10, ‐, ‐, ‐, 3
(C) 1, ‐, ‐, ‐, ‐, ‐, 3
(D) 1, 10, 8, ‐, ‐, ‐, 3

8. A hash table contains 10 buckets and uses linear probing to resolve collisions. The key values are integers and the hash function used is key % 10. if

the values 43, 165, 62, 123, 142 are inserted in the table, in what location would the key value 142 be inserted?

(A) 2 (B) 3 (C) 4 (D) 6

9. A program P reads in 500 integers in the range [0, 100] representing the scores of 500 students. It then prints the frequency of each score above 50.

what would be the best way for P to store the frequencies?

(A) An array of 50 numbers

(B) An array of 100 numbers
(C) An array of 500 numbers
(D) A dynamically allocated array of 550 numbers

10. Two matrices M1 and M2 are to be stored in arrays A and B respectively. Each array can be stored either in row‐major or column‐major order in

contiguous memory locations. The time complexity of an algorithm to compute M1 × M2 will be

(A) Best if A is in row‐major, and B is in column‐major order

(B) Best if both are in row‐major order
(C) Best if both are in column‐major order

(D) Independent of the storage scheme

11. An advantage of chained hash table (external hashing) over open addressing scheme is

(A) Worst case complexity of search operations is less
(B) Space used is less
(C) Deletion is easier
(D) None of the above

12. Consider a hash table with chaining scheme for overflow handling:

(i) What is the worst‐case timing complexity of inserting n elements into such a table?

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 3

or) do

(ii) For what type of instances does this hashing scheme take the worst case time for insertion?

13. Let A be a n x n matrix such that the elements in each row and each column are arranged in ascending order. Draw a decision tree which finds 1st,

2nd and 3rd smallest elements in minimum number of comparisons

14. An array A contains n integers in locations A[0], A[1], �.., A[n‐1]. It is required to shift the elements of the array cyclically to the left by K places,

where 1 ≤ K ≤ n‐1. An incomplete algorithm for doing this in linear time, without using another array is given be low. Complete the algorithm in the

blanks. Assume all variables are suitably declared.

min: = n;

i: = 0;

while do

begin

temp: = A[i];

j: = i;

while do

begin

A[j]: = ;

j: = (j+K) mod n;

if j < min then

min: = j;

end;

A[n + i – K) mod n]: = ;

i: = …………………………;

end;

15. An array A contains n integers in non‐decreasing order, A[1] ≤ A[2] ≤ ….≤ A[n]. Describe, using Pascal‐like pseudo code, a linear time algorithm to

find i, j such that A[i] + A[j] = a given integer M, if such i, j exist.

16. A two dimensional array A[1..n][1..n] of integers is partially sorted if

For all i, j ε [1…., n‐1] A[i][j] < A[i][j+1] and.

A[i][j] < A[i+1][j]

Fill in the blanks:

The smallest item in the array is at A[i][j] where 1 = and j = .

The smallest item is deleted. Complete the following O(n) procedure to insert item x (which is guaranteed to be smaller than any item in the

last row or column) still keeping A partially sorted. (4)

procedure insert(x: integer);

var i, j: integer;

begin

(1) i:= 1; j:= 1; A[i][j]:= x;

(2) while (

(3) if A[i+1][j] < A[i][j] then begin

(4) A[i][j]:= A[i+1][j]; i:= i+1;

(5) end

(6) else begin

x> >

http://www.padeepz.net/
http://www.padeepz.net/

www.padeepz.net

www.padeepz.net 4

(7)

(8) end

(9) A[i][j]:=

end

17. Let A be a two dimensional array declared as follows:

A: array [1 … 10] [1 … 15] of integer;

Assuming that each integer takes one memory locations the array is stored in row‐major order and the first element of the array is stored

at location 100, what is the address of element A[i][j]?

(a) 15i + j + 84 (b) 15j + i + 84

(c) 10i + j 89 (d)10j+i+89

18. Suppose you are given an array s[1 .. n] and a procedure reverse(s, i, j) which reverses the order of elements in s between positions i and j (both

inclusive). What does the following sequence do, where 1 ≤ k < n

19. Consider the following declaration of a two dimensional array in C:

Char a[100][100];

Assuming that the main memory is byte addressable and that the array is stored starting from address 0, the address of a[40][50] is

A. 4040

B. 4050
C. 5040

D. 5050

http://www.padeepz.net/
http://www.padeepz.net/

